

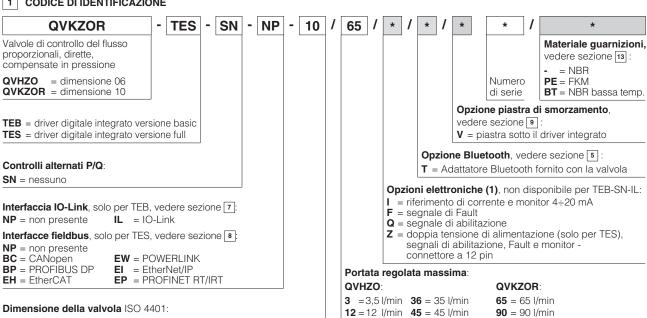
Valvole proporzionali digitali di controllo portata

dirette, compensate in pressione, con driver integrato e trasduttore LVDT

QVHZO-TEB. QVHZO-TES QVKZOR-TEB, QVKZOR-TES

Valvole di controllo del flusso proporzionali, dirette, compensate in pressione, dotate di trasduttore di posizione LVDT per un'ottima precisione nelle regolazioni della portata.

TEB versione basic con segnale di riferimento analogico o interfaccia IO-Link per segnali di riferimento digitali, impostazioni della valvola e diagnostica in tempo reale.

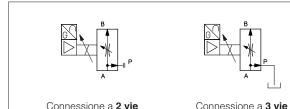

TES versione full che comprende anche interfacce fieldbus opzionali per i segnali di riferimento digitali, le impostazioni delle valvole e la diagnostica in tempo reale.

La connessione Bluetooth/USB è sempre presente per le impostazioni della valvola tramite l'App mobile e il software Atos per

QVHZQ-QVKZQR-

Dimens.: **06** - ISO 4401 Dimens.: **10** - ISO 4401 Portata max: 45 l/min Portata max: 90 l/min Pressione max: 210 bar Pressione max: 210 bar

1 CODICE DI IDENTIFICAZIONE


18 = 18 l/min

(1) Possibili opzioni combinate: /FI, /IQ, /IZ (le opzioni /T e /V possono essere combinate con tutte le altre opzioni)

2 SIMBOLI IDRAULICI

Connessione a 2 vie

06 = dimensione 06

10 = taglia 10

Le valvole possono essere usate nella connessione a 2 o 3 vie. a seconda dei requisiti dell'applicazione.

Nella versione a 2 vie, la bocca P non deve essere connessa (bloccata) Nella versione a 3 vie, la bocca P deve essere connessa al serbatoio o ad altre linee dell'utilizzatore

La bocca T deve risultare sempre non connessa (bloccata)

Per esempi di applicazione di collegamenti a 2 e 3 vie, vedere sezione 15

3 NOTE GENERALI

Le valvole proporzionali digitali Atos sono marcate CE secondo le Direttive applicabili (per esempio Direttiva EMC Immunità ed Emissione). Le procedure di installazione, cablaggio e messa in servizio devono essere eseguite secondo le prescrizioni generali riportate nella tabella tecnica **FS900** e nei manuali d'uso inclusi nel software di programmazione E-SW-SETUP.

4 IMPOSTAZIONI DELLA VALVOLA E STRUMENTI DI PROGRAMMAZIONE - vedere tabella tecnica GS500

4.1 App mobile Atos CONNECT

App scaricabile gratuitamente per smartphone e tablet che consente di accedere rapidamente ai principali parametri funzionali della valvola e alle informazioni diagnostiche di base tramite Bluetooth, evitando così il collegamento fisico dei cavi e riducendo significativamente i tempi di messa in servizio.

Atos CONNECT supporta i driver digitali per valvole Atos dotati di adattatore E-A-BTH o di Bluetooth integrato. Non supporta le valvole con controllo p/Q o i controlli degli assi.

4.2 Software PC E-SW-SETUP

Il software scaricabile gratuitamente per PC consente di impostare tutti i parametri funzionali della valvola e di accedere alle informazioni diagnostiche complete dei driver della valvola digitale tramite la porta di servizio Bluetooth/USB.

Il software per PC Atos E-SW-SETUP supporta tutti i driver delle valvole digitali Atos ed è disponibile sul sito www.atos.com nell'area MyAtos.

ATTENZIONE: la porta USB dei driver non è isolata! Per il cavo E-C-SB-USB/M12, si raccomanda di utilizzare l'adattatore dell'isolatore E-A-SB-USB/OPT per la protezione del PC

5 OPZIONE BLUETOOTH - vedere tabella tecnica GS500

L'opzione **T** aggiunge la connettività Bluetooth® ai driver delle valvole Atos grazie all'adattatore E-A-BTH, che può essere lasciato permanentemente integrato, per consentire la connessione Bluetooth con i driver delle valvole in qualsiasi momento. L'adattatore E-A-BTH può essere acquistato separatamente e utilizzato per collegarsi a qualsiasi prodotto digitale Atos supportato.

La connessione Bluetooth alla valvola può essere protetta dall'accesso non autorizzato mediante l'impostazione di una password personale. I led dell'adattatore indicano visivamente lo stato del driver della valvola e della connessione Bluetooth.

ATTENZIONE: per l'elenco dei paesi in cui l'adattatore Bluetooth è stato approvato, vedere la tabella tecnica **GS500**. L'opzione T l'opzione non è disponibile per il mercato indiano, pertanto l'adattatore Bluetooth deve essere ordinato separatamente.

6 SMART TUNING

Lo Smart Tuning consente di regolare la risposta dinamica della valvola per soddisfare le diverse esigenze di prestazioni.

La valvola è dotata di 3 impostazioni di fabbrica per il controllo del cursore:

- dinamico tempo di risposta rapido ed elevata sensibilità per ottenere le migliori prestazioni dinamiche. Impostazione di fabbrica predefinita per le valvole direzionali
- bilanciato tempo medio di risposta e sensibilità adatti alle principali applicazioni
- attenuato tempo di risposta e sensibilità attenuati per migliorare la stabilità del controllo in applicazioni critiche o in ambienti con disturbi elettrici

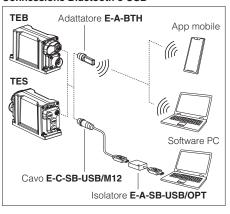
L'impostazione Smart Tuning può essere commutata da Dinamico (predefinita) a Bilanciato o Attenuato tramite software o Fieldbus; se richiesto, le prestazioni possono essere ulteriormente personalizzate regolando direttamente ogni singolo parametro di controllo. Per i dettagli consultare i relativi manuali E-MAN-RI-* e Quickstart, vedere sezione [25].

7 IO-LINK - solo per TEB, vedi tabella tecnica GS520

IO-Link consente una comunicazione digitale a basso costo tra la valvola e l'unità centrale della macchina. La valvola è collegata direttamente a una porta di un master IO-Link (connessione punto-punto) tramite cavi non schermati a basso costo per il riferimento digitale, la diagnostica e le impostazioni. Il master IO-Link funziona come un hub che scambia queste informazioni con l'unità centrale della macchina tramite Fieldbus.

8 FIELDBUS - solo per TES, vedi tabella tecnica GS510

Il Fieldbus consente una comunicazione diretta tra la valvola e l'unità di controllo macchina per il riferimento digitale, la diagnostica e le impostazioni della valvola. Queste versioni permettono di comandare le valvole tramite Fieldbus o segnali analogici disponibili sul connettore principale.


9 OPZIONE PIASTRA DI SMORZAMENTO

L'opzione **V** aggiunge una piastra di smorzamento tra il corpo della valvola e il driver integrato per ridurre le sollecitazioni meccaniche sui componenti elettronici, aumentando di conseguenza la durata della valvola in applicazioni con vibrazioni elevate e urti. Per ulteriori informazioni, consultare la tabella tecnica **G004**.

10 CARATTERISTICHE GENERALI

Posizione di installazione	Qualsiasi posizione		
Finitura superficie di montaggio secondo ISO 4401	Indice di rugosità accettabile: Ra ≤ 0,8, Ra consigliato 0,4 - Rapporto di planarità 0,01/100		
Valori MTTFd secondo EN ISO 13849	150 anni, per ulteriori dettagli, vedere tabella tecnica P007		
Range di temperatura ambiente	Standard = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ Opzione /PE = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ Opzione /BT = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$		
Range di temperatura di stoccaggio	Standard = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ Opzione /PE = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ Opzione /BT = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$		
Protezione della superficie	Zincatura con passivazione nera, trattamento galvanico (custodia del driver)		
Resistenza alla corrosione	Test in nebbia salina (EN ISO 9227) > 200 h		
Resistenza alle vibrazioni	Vedere tabella tecnica G004		
Conformità	CE secondo la Direttiva EMC 2014/30/UE (Immunità: EN 61000-6-2; emissioni: EN 61000-6-3) Direttiva RoHS 2011/65/UE come ultimo aggiornamento con 2015/863/UE Regolamento REACH (CE) n°1907/2006		

Connessione Bluetooth o USB

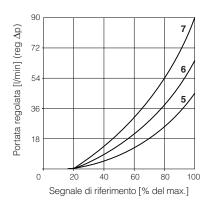
11 CARATTERISTICHE IDRAULICHE - con olio minerale ISO VG 46 a 50°C

Modello valvola				QVHZO			QVKZOR		
Portata regola	ta massima	[l/min]	3,5	12	18	35	45	65	90
Portata minima	a regolata	[cm³/min]	15	20	30	50	60	85	100
Δp di regolazione [bar]		[bar]	4	- 6	10 -	- 12	15	6 - 8	10 - 12
Portata massima alla bocca A [I/min]		[l/min]	50 60			60	70	100	
Pressione massima [bar]		[bar]	210				210		
Tempo di risposta 0÷100% segnale a gradino [ms]		a gradino [ms]	25				3	15	
Isteresi [% della portata regolata massima]		golata massima]	0,5			0	,5		
Linearità [% della portata regolata massima]		0,5			0	,5			
Ripetibilità [% della portata regolata massima]		0,1			0	,1			
Deriva termica			spostamento dello zero < 1% a ΔT = 40°C						

12 CARATTERISTICHE ELETTRICHE

Tensioni di alimentazione	Nominale Rettificata e filtrata	: +24 VDC : VRMS = 20 ÷ 32 V	/MAX (ripple max 10%	√VPP)		
Potenza massima assorbita	50 W	50 W				
Corrente massima solenoide	QVHZO = 2,6 A	QVKZOR =	3 A			
Resistenza R della bobina a 20°C	QVHZO = $3 \div 3,3 \Omega$	QVKZOR =	3,8 ÷ 4,1 Ω			
Segnali analogici in ingresso	Tensione: gamma: Corrente: gamma:	`		za in ingresso: Ri > 5 za in ingresso: Ri = 5		
Segnali di monitor in uscita	Campo di regolazio			@ max. 5 mA @ max. 500 Ω di resis	tenza del carico	
Abilitazione in ingresso	Range: 0 ÷ 5 VDC (sta	to OFF), 9 ÷ 24 VDC (st	ato ON), 5 ÷ 9 VDC (no	n accettato); Impedenza	a in ingresso: Ri > 10 k Ω	
Fault in uscita				entazione - 2 V]; stato . a causa di carichi ind		
Alimentazione del trasduttore di pressione/forza (solo per SP, SF, SL)	+24 VDC @ max. 100	0 mA (E-ATR-8 veder	e tabella tecnica GS4	65)		
Allarmi	Solenoide non collegato/cortocircuito, rottura del cavo con il segnale di riferimento di corrente, sovratem- peratura/sottotemperatura, malfunzionamento del trasduttore del cursore della valvola, funzione di memo- rizzazione della cronologia degli allarmi					
Classe di isolamento	H (180°) In relazione alle temperature della superficie delle bobine del solenoide, devono essere presi in considerazione gli standard europei ISO 13732-1 e EN982					
Indice di protezione secondo DIN EN60529	IP66 / IP67 con rispe	ettivi connettori corre	tamente montati			
Fattore d'utilizzo	Utilizzo continuativo	(ED=100%)				
Tropicalizzazione	Tropicalizzazione de	el circuito elettronico	stampato			
Ulteriori caratteristiche	trollo della posizione		P.I.D. con commutaz		a (solo per TES); con- pide; protezione contro	
Interfaccia di comunicazione	USB Codifica ASCII Atos	Interfaccia IO-Link e specifiche di sistema 1.1.3	CANopen	PROFIBUS DP EN50170-2/IEC61158	EtherCAT POWERLINK EtherNet/IP PROFINET IO RT/IRT	
		SDCI	CAN ISO11898	RS485 isolata	Fast Ethernet.	
Livello fisico della comunicazione	+ USB OTG	porta classe B	isolato otticamente	otticamente	100 Base TX isolato	
Cablaggio raccomandato	Cavi schermati LiYC	CY, vedere sezione 22		•		

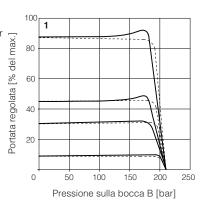
Nota: tra l'alimentazione al driver con tensione di alimentazione da 24 V DC e il momento in cui la valvola è pronta a funzionare, si deve considerare un tempo massimo di 800 ms (a seconda del tipo di comunicazione). Durante questo intervallo di tempo la corrente alla bobina della valvola è zero.

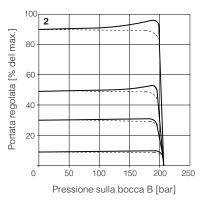

GUARNIZIONI E FLUIDI IDRAULICI - per gli altri fluidi non compresi nella tabella seguente, consultare il nostro ufficio tecnico

Guarnizioni, temperatura fluido raccomandata	Guarnizioni NBR (standard) = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$, con fluidi idraulici HFC = $-20^{\circ}\text{C} \div +50^{\circ}\text{C}$ Guarnizioni FKM (opzione /PE) = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$ Guarnizioni NBR bassa temperatura (opzione /BT) = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$, con fluidi idraulici HFC $-20^{\circ}\text{C} \div +50^{\circ}\text{C}$			
Viscosità raccomandata	20÷100 mm²/s - limiti max ammessi 15 ÷ 380 mm²/s			
Livello di contaminazio- funzionamento no	male ISO4406 classe 18/16/13 NAS	AS1638 classe 7 vedere anche la sezione filtri su		
ne massimo del fluido vita e	stesa ISO4406 classe 16/14/11 NAS	a ISO4406 classe 16/14/11 NAS1638 classe 5 www.atos.com		
Fluido idraulico	Tipo di guarnizioni adatte	Classificazione	Rif. Standard	
Oli minerali	NBR, FKM, NBR bassa temp.	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524	
Ininfiammabile senza acqua	FKM	HFDU, HFDR ISO 12922		
Ininfiammabile con acqua	NBR, NBR bassa temp.	HFC	130 12922	

14.1 Diagrammi di regolazione

- 1 = QVHZO-*-06/3
- 2 = QVHZO-*-06/12
- 3 = QVHZO-*-06/18
- **4** = QVHZO-*-06/**36**
- **5** = QVHZO-*-06**/45**
- 6 = QVKZOR-*-10/65
- 7 = QVKZOR-*-10/90

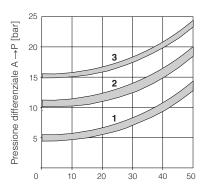


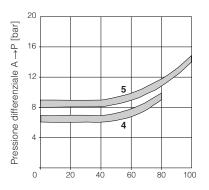


14.2 Diagrammi portata regolata/pressione di mandata con pressione in entrata = 210 bar

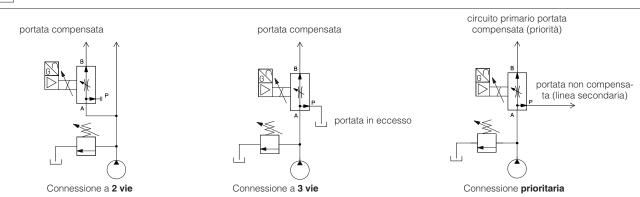
- **1** = QVHZO
- 2 = QVKZOR

Linea tratteggiata per le versioni a 3 vie





14.3 Diagrammi portata A →P/∆p


Configurazione a 3 vie

- 1 = QVHZO-*-06/3 QVHZO-*-06/12
- 2 = QVHZO-*-06/18
- QVHZO-*-06/**36 3** = QVHZO-*-06/**45**
- **4** = QVKZOR-*-10/65
- **5** = QVKZOR-*-10/90

15 APPLICAZIONI E CONNESSIONI

Connessione a 2 vie

La connessione a 2 vie è normalmente utilizzata per controllare la portata in una parte del circuito idraulico o per regolare la velocità di uno specifico attuatore

La portata misurata nella linea controllata viene mantenuta costante, indipendentemente dalle variazioni del carico

Se la valvola è installata direttamente sulla linea principale della pompa, la portata in eccesso torna al serbatoio attraverso la valvola limitatrice di pressione

Connessione a 3 vie

La connessione a 3 vie è normalmente utilizzata quando la valvola controlla direttamente la portata della pompa (linea principale)

La portata misurata nella linea controllata viene mantenuta costante, indipendentemente dalle variazioni del carico

La portata in eccesso (non misurata dalla valvola) ritorna al serbatoio attraverso la bocca P della valvola = linea T (3a via)

Connessione prioritaria

La connessione prioritaria garantisce l'alimentazione della portata compensata in pressione al circuito primario.

La portata in eccesso (non richiesta dal circuito primario) viene bypassata attraverso la bocca P della valvola e convogliata verso il circuito secondario che opera a una pressione inferiore e non richiede regolazioni della portata compensata.

16 OPZIONI ELETTRONICHE - non disponibile per TEB-SN-IL

- F = Questa opzione consente di monitorare l'eventuale condizione di Fault del driver, come ad esempio il cortocircuito del solenoide/non collegato, la rottura del cavo del segnale di riferimento per l'opzione /l, la rottura del trasduttore di posizione del cursore, ecc. vedere 18.9 per le specifiche del segnale.
- I = Questa opzione fornisce segnali di riferimento e monitor a 4 ÷ 20 mA di corrente, invece dei segnali standard 0 ÷ 10 VDC. Il segnale in ingresso può essere riconfigurato via software scegliendo tra tensione e corrente, entro un valore massimo di ±10 VDC o ±20 mA. Viene normalmente utilizzato in caso di lunga distanza tra l'unità di controllo della macchina e la valvola o quando il segnale di riferimento può essere influenzato da disturbi elettrici; il funzionamento della valvola viene disabilitato in caso di rottura del cavo del segnale di riferimento.
- Q = Questa opzione consente di inibire il funzionamento della valvola senza togliere l'alimentazione al driver. Al comando di disattivazione, la corrente al solenoide viene azzerata e il cursore della valvola si sposta in posizione di riposo. L'opzione /Q è consigliata per tutti i casi in cui la valvola deve essere frequentemente inibita durante il ciclo della macchina - vedere 18.7 per le specifiche dei segnali.
- **Z** = Questa opzione fornisce, sul connettore principale a 12 pin, le seguenti funzioni aggiuntive:

Segnale di Fault in uscita - vedere opzione precedente /F Segnale di abilitazione in ingresso - vedere opzione precedente /Q

Ripetizione del segnale di abilitazione in uscita - solo per TEB-SN-NP (vedere 18.6)

Tensione di alimentazione per le logiche e la comunicazione del driver - solo per TES (vedere 18.2)

17 POSSIBILI OPZIONI COMBINATE - non disponibile per TEB-SN-IL

/FI. /IQ. /IZ

Nota: le opzioni dell'adattatore Bluetooth π e della piastra di smorzamento N possono essere combinate con tutte le altre opzioni

18 SPECIFICHE ALIMENTAZIONE DI TENSIONE E SEGNALI

I segnali elettrici generici in uscita della valvola (per esempio segnali di Fault o monitor) non devono essere direttamente utilizzati per attivare funzioni di sicurezza, per esempio per attivare/disattivare i componenti di sicurezza della macchina, così come prescritto dagli standard europei (ISO 4413 -Requisiti di sicurezza dei sistemi e componenti per trasmissioni oleoidrauliche e pneumatiche).

Per TEB-SN-IL vedere la sezione 19

18.1 Tensione di alimentazione (V+ e V0)

La tensione di alimentazione deve essere adeguatamente stabilizzata o raddrizzata e filtrata: applicare una capacitanza di almeno 10000 μ F/40 V a raddrizzatori monofase o una capacitanza di 4700 μ F/40 V a raddrizzatori trifase. In caso di alimentazione separata vedere 18.2.

È necessario cablare in serie all'alimentazione un fusibile di protezione: fusibile ritardato da 2,5 A.

18.2 Tensione di alimentazione per la logica e la comunicazione del driver (VL+ e VL0) - solo per TES con opzione /Z

La tensione di alimentazione per la logica e la comunicazione del driver deve essere adeguatamente stabilizzata o raddrizzata e filtrata: applicare una capacitanza di almeno $10000~\mu\text{F}/40~\text{V}$ a raddrizzatori monofase o una capacitanza di $4700~\mu\text{F}/40~\text{V}$ a raddrizzatori trifase. L'alimentazione separata per la logica driver su pin 9 e 10 permette di rimuovere l'alimentazione al solenoide da pin 1 e 2 mantenendo attiva la diagnostica e le comunicazioni USB e Fieldbus.

È necessario cablare in serie all'alimentazione di ogni logica driver e comunicazione un fusibile di protezione: 500 mA rapido.

18.3 Segnale di riferimento in ingresso della portata (Q_INPUT+)

Il driver controlla ad anello chiuso la posizione del cursore della valvola in modo proporzionale al segnale di riferimento in ingresso esterno. Il segnale di riferimento in ingresso è preimpostato in fabbrica in base al codice valvola selezionato, i valori predefiniti sono 0 ÷ 10 Vpc per lo standard e 4 ÷ 20 mA per l'opzione /I.

Il segnale in ingresso può essere riconfigurato via software scegliendo tra tensione e corrente, entro un valore massimo di ±10 VDC o ±20 mA. I driver con interfaccia fieldbus possono essere impostati via software per ricevere il segnale di riferimento direttamente dall'unità di controllo della macchina (riferimento fieldbus). Il segnale analogico di riferimento in ingresso può essere usato come comando on-off con campo di regolazione in ingresso 0 ÷ 24V DC.

18.4 Segnale in uscita del monitor di portata (Q_MONITOR) - non per /F

Il driver genera un segnale analogico in uscita proporzionale alla posizione effettiva del cursore della valvola; il segnale di monitor in uscita può essere impostato via software per mostrare altri segnali disponibili nel driver (ad esempio, riferimento analogico, riferimento del

Fieldbus, posizione del cursore di pilotaggio). Il segnale in uscita del monitor è preimpostato in fabbrica in base al codice valvola selezionato, i valori predefiniti sono 0 ÷ 10 VDC per lo standard e 4 ÷ 20 mA per l'opzione /I.

Il segnale in uscita può essere riconfigurato via software selezionando tra tensione e corrente, entro un valore massimo di ±10 VDC o ± 20 mA.

18.5 Segnale di abilitazione in ingresso (ENABLE) - non per standard e /F

Per abilitare il driver, alimentare con 24 VDC il pin 3 (pin C): Il segnale di abilitazione in ingresso permette di attivare / rimuovere l'alimentazione al solenoide senza interrompere l'alimentazione al driver; è utilizzato per attivare la comunicazione e le altre funzioni del driver quando la valvola deve essere disabilitata per ragioni di sicurezza. Questa condizione non soddisfa i requisiti delle norme IEC 61508 e ISO 13849. Il segnale di abilitazione in ingresso può essere usato come ingresso digitale generico tramite selezione software.

18.6 Ripetizione del segnale di abilitazione in uscita (R_ENABLE) - solo per TEB-SN-NP con /Z opzione

L'abilitazione alla ripetizione viene utilizzata come segnale di ripetizione in uscita del segnale di abilitazione in ingresso (vedere 18.5).

18.7 Segnale di Fault in uscita (FAULT) - non per lo standard e /Q

Il segnale di Fault in uscita indica le condizioni di Fault del driver (solenoide in cortocircuito/non collegato, rottura cavo del segnale di riferimento in corrente 4 ÷ 20 mA, rottura cavo del trasduttore di posizione del cursore, ecc.). La presenza di Fault corrisponde a 0 VDC, il funzionamento normale corrisponde a 24 VDC.

Lo stato di Fault non è influenzato dal segnale di abilitazione in ingresso. Il segnale di Fault in uscita può essere utilizzato come uscita digitale mediante selezione software.

19 SPECIFICHE DEI SEGNALI IO-LINK - solo per TEB-SN-IL

19.1 Tensione di alimentazione per la comunicazione IO-Link (L+ e L-)

Il master IO-Link fornisce una tensione di alimentazione dedicata a 24 VDC per la comunicazione IO-Link.

Potenza assorbita massima: 2 W

Isolamento elettrico interno dell'alimentazione L+, L- da P24, N24

19.2 Tensione di alimentazione per la logica del driver e la regolazione della valvola (P24 e N24)

Il master IO-Link fornisce una tensione di alimentazione dedicata a 24 VDC per la regolazione, la logica e la diagnostica delle valvole. Potenza assorbita massima: 50 W

Isolamento elettrico interno dell'alimentazione P24, N24 da L+, L-19.3 Linea dati IO-Link (C/Q)

Il segnale C/Q viene utilizzato per stabilire le comunicazioni tra il master IO-Link e la valvola.

20 CONNESSIONI ELETTRONICHE E LED

20.1 Segnali del connettore principale - 7 pin - standard, /F e /Q opzioni 🗐

PIN	Standard	/Q	/F	SPECIFICHE TECNICHE	NOTE
А	A V +			Alimentazione 24 VDC	Ingresso - alimentazione
В	V0			Alimentazione 0 Vpc	Gnd - alimentazione
	AGND		AGND	Zero analogico	Gnd - segnale analogico
		ENABLE		Abilitazione (24 VDC) o disabilitare (0 VDC) la valvola, riferita a VO	Ingresso - segnale on-off
D	Q INPUT+			Segnale di riferimento in ingresso portata: ±10 Vpc / ±20 mA valore massimo	Ingresso - segnale analogico
	Q_INPOT+			I valori predefiniti sono 0 ÷ 10 Vpc per lo standard e 4 ÷ 20 mA per opzione /I	Selezionabile via software
Е	E INPUT-			Segnale di riferimento in ingresso negativo per Q_INPUT+	Ingresso - segnale analogico
	Q_MONITOR riferito a:			Segnale in uscita monitor portata: ±10 Vpc / ±20 mA valore massimo	Uscita - segnale analogico
F	AGND V0			I valori predefiniti sono 0 ÷ 10 VDC per lo standard e 4 ÷ 20 mA per opzione /I	Selezionabile via software
			FAULT	Fault (0 VDc) o funzionamento normale (24 VDc)	Uscita - segnale on-off
G	EARTH			Collegato internamente alla custodia del driver	

20.2 Segnale del connettore principale - 12 pin - opzione /Z (A2)

PIN	TEB-SN /Z	TES-SN /Z	SPECIFICHE TECNICHE	NOTE
	V+		Alimentazione 24 Vbc	Ingresso - alimentazione
1	V0		Alimentazione 0 Vpc	Gnd - alimentazione
2	ENABLE rife	rito a: VL0	Abilitazione (24 Vpc) o disabilitazione (0 Vpc) della valvola	Ingresso - segnale on-off
4	Q_INPUT+		Segnale di riferimento in ingresso portata: ±10 Vpc / ±20 mA valore massimo I valori predefiniti sono 0 ÷ 10 Vpc per lo standard e 4 ÷ 20 mA per opzione /I	Ingresso - segnale analogico Selezionabile via software
5	INPUT-		Segnale di riferimento in ingresso negativo per Q_INPUT+	Ingresso - segnale analogico
6	Q_MONITOR	riferito a:	Segnale in uscita monitor portata: ±10 Vpc / ±20 mA valore massimo	Ingresso - segnale analogico
0	AGND VL0		I valori predefiniti sono 0 ÷ 10 Vpc per lo standard e 4 ÷ 20 mA per opzione /I	Selezionabile via software
7	AGND		Zero analogico	Uscita - segnale analogico
′		NC	Non collegare	Gnd - segnale analogico
8	R_ENABLE		Abilitazione alla ripetizione, segnale di ripetizione in uscita dell'ingresso di abilitazione, riferito a VO	Uscita - segnale on-off
0		NC	Non collegare	
9	NC		Non collegare	
9		VL+	Alimentazione 24 VDC per logica driver e comunicazione	Ingresso - alimentazione
10	NC		Non collegare	
10		VL0	Alimentazione 0 Vpc per logica driver e comunicazione	Gnd - alimentazione
11 PE	FAULT riferit	o a: VL0	Fault (0 Vpc) o funzionamento normale (24 Vpc)	Uscita - segnale on-off
	EARTH		Collegato internamente alla custodia del driver	

Nota: non scollegare VL0 prima di VL+ quando il driver è collegato alla porta USB del PC

20.3 Segnali connettore IO-Link - M12 - 5 pin - Codifica A, porta classe B (A) solo TEB-SN-IL Esempi di collegamento tra valvola e master

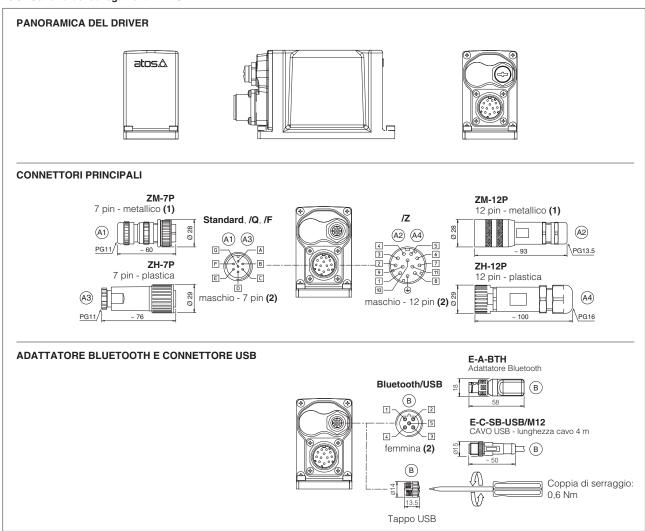
PIN	SEGNALE	SPECIFICHE TECNICHE	NOTE
1	1 L+ 24 Vpc per la comunicazione IO-Link Ingresso - alime		Ingresso - alimentazione
2	P24	24 VDC per regolazione, logica e diagnostica della valvola	Ingresso - alimentazione
3	L-	0 Vpc per la comunicazione IO-Link	Gnd - alimentazione
4	C/Q	Linea dati IO-Link	Ingresso/uscita - segnale
5	N24	0 Vpc per regolazione, logica e diagnostica della valvola	Gnd - alimentazione

Nota: L+, L- e P24, N24 sono elettricamente isolati

Valvola		Valvola	Master
Classe B	Classe D	Classe B	Classe A
L+	L+	L+	L+
L-	<u>L-</u>	L-	L
C/Q	C/Q		C/Q
P24 (1)	P24	P24 (1)	
N24 (1)	N24	N24 (1)	(2)

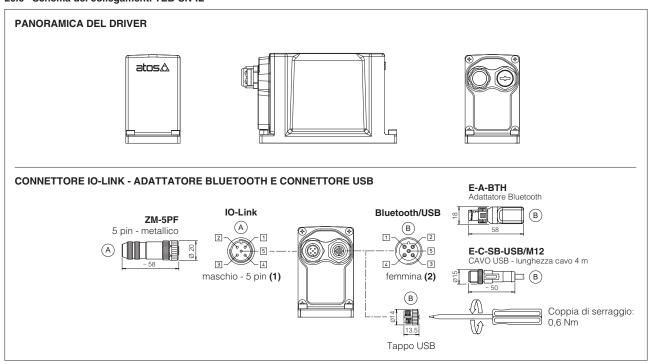
- (1) Consumo massimo di energia: 50 W
- (2) Alimentazione esterna

	B Connettore USB - M12 - 5 pin sempre presente				
PIN	SEGNALE	SPECIFICHE TECNICHE (1)			
1	+5V_USB	Alimentazione			
2	ID	Identificazione			
3	GND_USB	Segnale zero linea dati			
4	D-	Linea dati -			
5	D+	Linea dati +			

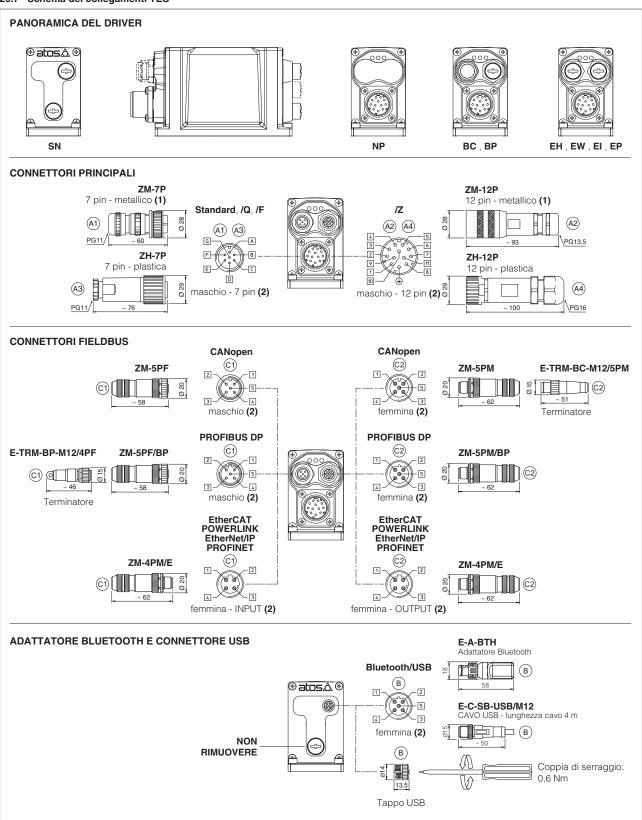

©1 (© Versione Fieldbus BP, connettore - M12 - 5 pin				
PIN	SEGNALE	SPECIFICHE TECNICHE (1)			
1	+5V	Segnale tensione di terminazione			
2	LINEA-A	Linea Bus (alto)			
3	DGND	Segnale zero linea dati e terminazione			
4	LINEA-B	Linea Bus (basso)			
5	SCHERMO				

(C1) (© Versione Fieldbus BC, connettore - M12 - 5 pin				
PIN SEGNALE SPECIFICHE TECNICHE (1)					
1	CAN_SHLD	Schermo			
2	non utiliz.	©1 - ©2 collegamento passante (2)			
3	CAN_GND	Segnale zero linea dati			
4	CAN_H	Linea Bus (alto)			
5	CAN_L	Linea Bus (basso)			

©1) (©1 ©2 Versione fieldbus EH, EW, EI, EP, connettore - M12 - 4 pin				
PIN	PIN SEGNALE SPECIFICHE TECNICHE (1)				
1	TX+	Trasmettitore			
2	RX+	Ricevitore			
3	TX-	Trasmettitore			
4	RX-	Ricevitore			
	SCHERMO				


- (1) Si raccomanda la connessione shield su alloggiamento del connettore
- (2) Il pin 2 può essere alimentato con l'alimentazione esterna a +5V dell'interfaccia CAN

20.5 Schema dei collegamenti TEB-SN-NP



(1) Si raccomanda vivamente l'uso di connettori metallici per soddisfare i requisiti EMC (2) Disposizione dei pin sempre riferita alla vista del driver

20.6 Schema dei collegamenti TEB-SN-IL

(1) Disposizione dei pin sempre riferita alla vista del driver

(1) Si raccomanda vivamente l'uso di connettori metallici per soddisfare i requisiti EMC (2) Disposizione dei pin sempre riferita alla vista del driver

20.8 LED di diagnostica - solo per TES

Tre led visualizzano le condizioni operative del driver per la diagnostica immediata di base. Per informazioni dettagliate consultare il manuale utente del driver.

FIELDBUS	NP Non presente	BC CANopen	BP PROFIBUS DP	EH EtherCAT	EW POWERLINK	EI EtherNet/IP	EP PROFINET	L1 L2 L3
L1	STAT	O DELLA VAL	VOLA		LIN	<th></th>		
L2	ST	ATO DELLA RE	TE	STATO DELLA RETE				
L3	STAT	O DEL SOLEN	OIDE	LINK/ACT				

21 CONNETTORI DI COMUNICAZIONE FIELDBUS IN / OUT

Due connettori di comunicazione Fieldbus sono sempre disponibili per i driver digitali BC, BP, EH, EW, EI, EP. Questa caratteristica consente di ottenere notevoli vantaggi tecnici in termini di semplicità di installazione e riduzione dei cablaggi e consente anche di evitare l'utilizzo di costosi connettori a T.

Per le versioni BC e BP i connettori del fieldbus hanno una connessione passante interna e possono essere utilizzati come punto finale della rete del fieldbus, utilizzando un terminatore esterno (vedere la tabella tecnica **GS500**)

Per le versioni EH, EW, El ed EP i terminatori esterni non sono necessari: ogni connettore è terminato internamente.

collegamento passante BC e BP rete Fieldbus interfaccia Fieldbus

22 CARATTERISTICHE CONNETTORI - da ordinare separatamente

22.1 Connettori principali - 7 pin

TIPO DI CONNETTORE	TENSIONE DI ALIMENTAZIONE E SEGNALI	TENSIONE DI ALIMENTAZIONE E SEGNALI	
CODICE	A1) ZM-7P	A3 ZH-7P	
Tipo	circolare diritto femmina a 7 pin	circolare diritto femmina a 7 pin	
Standard	Secondo MIL-C-5015	Secondo MIL-C-5015	
Materiale	Metallo	Plastica rinforzata con fibra di vetro	
Pressacavo	PG11	PG11	
Cavo raccomandato	LiYCY 7 x 0,75 mm² max 20 m (logica e alimentazione)	LiYCY 7 x 0,75 mm² max 20 m (logica e alimentazione)	
Cavo raccomandato	oppure LiYCY 7 x 1 mm ² max 40 m (logica e alimentazione)	oppure LiYCY 7 x 1 mm² max 40 m (logica e alimentazione)	
Dimensione conduttori	fino a 1 mm² - disponibile per 7 fili	fino a 1 mm ² - disponibile per 7 fili	
Tipo di collegamento	da saldare	da saldare	
Protezione (EN 60529)	IP 67	IP 67	

22.2 Connettori principali - 12 pin

TIPO DI CONNETTORE	TENSIONE DI ALIMENTAZIONE E SEGNALI	TENSIONE DI ALIMENTAZIONE E SEGNALI		
CODICE	(A2) ZM-12P	A4) ZH-12P		
Tipo	circolare diritto femmina a 12 pin	circolare diritto femmina a 12 pin		
Standard	DIN 43651	DIN 43651		
Materiale	Metallo	Plastica rinforzata con fibra di vetro		
Pressacavo	PG13,5	PG16		
Cavo raccomandato	LiYCY 12 x 0,75 mm² max 20 m (logica e alimentazione)	LiYCY 10 x 0,14 mm² max 40 m (logica) LiYY 3 x 1 mm² max 40 m (alimentazione)		
Dimensione conduttori	da 0,5 mm² a 1,5 mm² - disponibile per 12 fili	da 0,14 mm² a 0,5 mm² - disponibile per 9 fili da 0,5 mm² a 1,5 mm² - disponibile per 3 fili		
Tipo di collegamento	da crimpare	da crimpare		
Protezione (EN 60529)	IP 67	IP 67		

22.3 Connettore IO-Link - solo per TEB-SN-IL

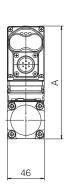
TIPO DI CONNETTORE	IL IO-Link				
CODICE	A ZM-5PF				
Tipo	circolare diritto femmina a 5 pin				
Standard	M12 codifica A – IEC 61076-2-101				
Materiale	Metallo				
Pressacavo	Dado a pressione - diametro cavo 6÷8 mm				
Cavo raccomandato	5 x 0,75 mm² max 20 m				
Tipo di collegamento	morsetto a vite				
Protezione (EN 60529)	IP 67				

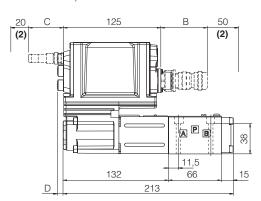
22.4 Connettori di comunicazione Fieldbus

TIPO DI CONNETTORE	BC CANopen (1)		BP PROFI	BUS DP (1)	EH EtherCAT, EW POWERLINK, EI EtherNet/IP, EP PROFINET (2)		
CODICE	©1) ZM-5PF	©2 ZM-5PM	C1 ZM-5PF/BP	©2 ZM-5PM/BP	C1 C2	ZM-4PM/E	
Tipo	femmina circolare	maschio circolare	femmina circolare	maschio circolare	maschio circolare		
	diritto 5 pin	diritto 5 pin	diritto 5 pin	diritto 5 pin	diritto 4 pin		
Standard	M12 codifica A – IEC 61076-2-101		M12 codifica B – IEC 61076-2-101		M12 codifica D – IEC 61076-2-101		
Materiale	Metallo		Metallo		Metallo		
Pressacavo	Dado a pressione - diametro cavo 6÷8 mm		Dado a pressione - diametro cavo 6÷8 mm		Dado a pressione - diametro cavo 4÷8 mr		
Cavo	CANbus Standard (DR 303-1)		PROFIBUS DP Standard		Ethernet standard CAT-5		
Tipo di collegamento	morsetto a vite		morsetto a vite		morsettiera		
Protezione (EN 60529)	IP67		IP 67		IP 67		

(1) I terminali E-TRM-** possono essere ordinati separatamente - vedere tabella tecnica ${\tt GS500}$

(2) Terminato internamente


23 VITI DI FISSAGGIO E GUARNIZIONI

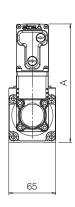

	QVHZO	QVKZOR			
	Viti di fissaggio: 4 viti a esagono incassato M5x50 classe 12.9 Coppia di serraggio = 8 Nm	Viti di fissaggio: 4 viti a esagono incassato M6x40 classe 12.9 Coppia di serraggio = 15 Nm			
0	Guarnizioni: 4 OR 108 Diametro delle bocche A, B, P, T: Ø 7,5 mm (massimo)	Guarnizioni: 5 OR 2050 Diametro delle bocche A, B, P, T: Ø 11,2 mm (massimo)			

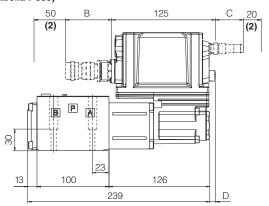
QVHZO-TEB, QVHZO-TES

ISO 4401: 2005

Superficie di montaggio: 4401-03-02-0-05 (vedere tabella P005)

QVHZO	Α	B (1)	C (1)	D	Massa [kg]
TEB - SN - IL	140	60	-	-	
TEB - SN - NP	140	100	-	-	
TES - SN - NP, BC, BP, EH	140	100	58	8	2,7
TES - SN - EW, EI, EP	155	100	58	8	
Opzione /V	+15		-		


(1) La dimensione indicata si riferisce ai connettori più lunghi o all'adattatore Bluetooth Per le dimensioni dei connettori e dell'adattatore Bluetooth, vedere le sezioni 20.5, 20.6 e 20.7


(2) Spazio necessario per il cavo di collegamento e per la rimozione del connettore

QVKZOR-TEB, QVKZOR-TES

ISO 4401: 2005

Superficie di montaggio: 4401-05-04-0-05 (vedere tabella P005)

QVKZOR	Α	B (1)	C (1)	D	Massa [kg]
TEB - SN - IL	150	60	-	-	
TEB - SN - NP	150	100	-	-	
TES - SN - NP, BC, BP, EH	150	100	58	8	4,7
TES - SN - EW, EI, EP	165	100	58	8	
Opzione /V	+15		-		1

(1) La dimensione indicata si riferisce ai connettori più lunghi o all'adattatore Bluetooth Per le dimensioni dei connettori e dell'adattatore Bluetooth, vedere le sezioni 20.5, 20.6 e 20.7

(2) Spazio necessario per il cavo di collegamento e per la rimozione del connettore

25 DOCUMENTAZIONE CORRELATA

FS001 Generalità per l'elettroidraulica digitale P005 Superfici di montaggio per le valvole elettroidrauliche FS900 QB300 Informazioni operative e di manutenzione per valvole proporzionali Guida rapida alla messa in servizio delle valvole TEB **GS500** Strumenti di programmazione QF300 Guida rapida alla messa in servizio delle valvole TES Fieldbus GS510 E-MAN-RI-LEB Manuale d'uso TEB/LEB **GS520** Interfaccia IO-Link E-MAN-RI-LES Manuale d'uso TES/LES K800 Connettori elettrici ed elettronici