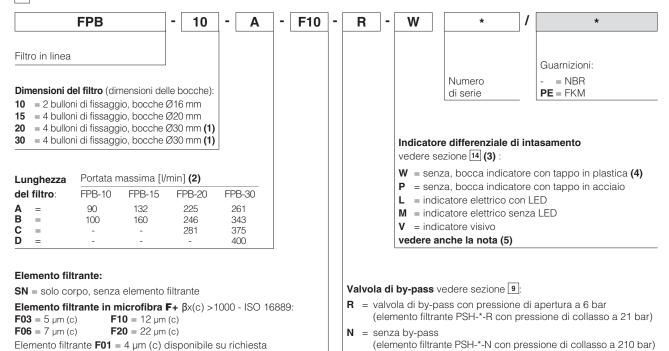


Filtri in linea tipo FPB

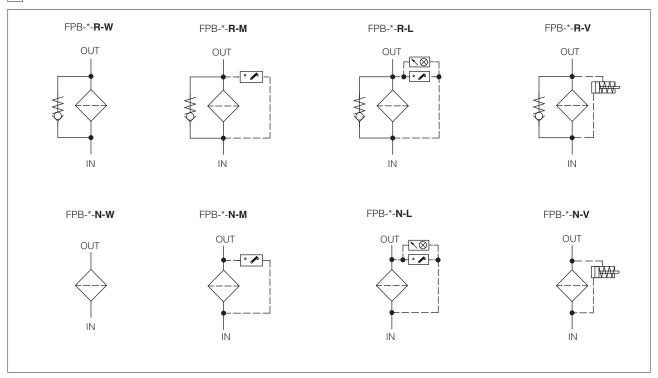
Montaggio a flangia per monoblocchi

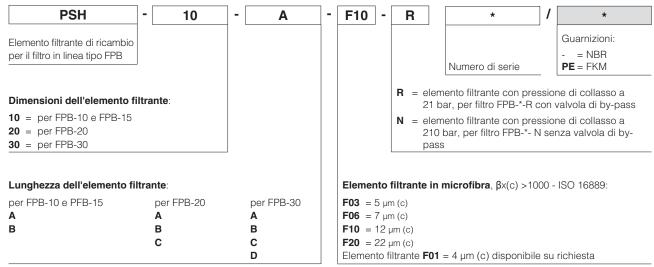

FPB

I filtri in linea con montaggio a flangia sono progettati per l'installazione su monoblocchi per garantire un'elevata pulizia del fluido in circolo nel sistema idraulico. Proteggono i componenti sensibili dalla contaminazione presente nel fluido di lavoro e sono particolarmente indicati per sistemi con valvole proporzionali.

- quattro dimensioni di testa, con tre diverse flange di montaggio
- dimensioni della bocca: da Ø16 a Ø30 mm
- gli elementi in microfibra Filtration Plus garantiscono elevata efficienza, bassa caduta di pressione, DHC elevata e prestazioni durevoli. Pressione di collasso: 21 bar per filtri dotati di valvola di by-pass oppure 210 bar per filtri senza by-pass
- grado di filtrazione 5 7 12 22 μm(c) (βx (c) >1000, ISO 16889).
- versioni senza o con valvola di by-pass con pressione di apertura pari a 6 bar.
- senza o con indicatore differenziale di intasamento

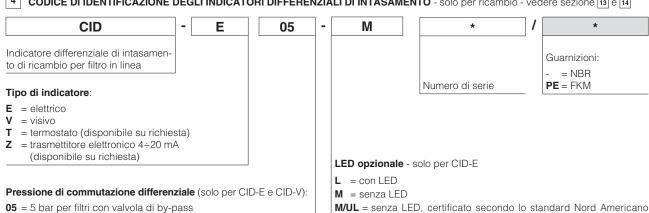
Portata massima **400 l/min**Pressione di lavoro massima **250 bar**


1 CODICE DI IDENTIFICAZIONE DEI FILTRI COMPLETI


Nota: i filtri utilizzabili in atmosfere potenzialmente esplosive sono disponibili su richiesta, contattare l'ufficio tecnico Atos

- (1) I filtri di dimensione 20 e 30 hanno la stessa flangia di montaggio ma dimensioni di soffiaggio diverse
- (2) Le portate massime sono misurate con: Δp 1 bar, elemento filtrante F20, opzione -R, viscosità olio 32 mm²/s vedere anche la sezione 6 In condizioni differenti vedere sezione 10 per le dimensioni del filtro
- (3) L'indicatore di intasamento viene fornito smontato dal filtro. La bocca dell'indicatore sulla testa del filtro è chiusa da un tappo in plastica.
- (4) Il tappo in plastica (opzione W) è montato in fabbrica per impedire l'ingresso di impurità nel filtro attraverso la bocca dell'indicatore di intasamento.
 - L'indicatore di intasamento deve essere montato sul filtro prima della messa in funzione. Non montare il filtro con il cappuccio in plastica sul sistema idraulico
- (5) L'indicatore differenziale di intasamento CID-E*-M/UL con certificazione cURus è disponibile su richiesta, vedere sezione L'indicatore differenziale con termostatato CID-T e il trasmettitore elettronico differenziale con segnale in uscita 4÷20 mA CID-Z sono disponibili su richiesta, vedere sezione 4

2 SIMBOLI IDRAULICI (rappresentazione secondo la norma ISO 1219-1)



3 CODICE DI IDENTIFICAZIONE DEGLI ELEMENTI FILTRANTI - solo per ricambio (1)

(1) Selezionare l'elemento filtrante in base al codice di identificazione riportato sulla targhetta del filtro, vedere sezione 17

CODICE DI IDENTIFICAZIONE DEGLI INDICATORI DIFFERENZIALI DI INTASAMENTO - solo per ricambio - vedere sezione 13 e 14

08 = 8 bar per filtri senza valvola di by-pass

cURus (disponibile su richiesta)

5 CARATTERISTICHE GENERALI

Posizione di installazione		Posizione verticale con bicchierino rivolto verso il basso					
Range di temperatura ambiente		Standard = -20° C \div +70°C Opzione /PE = -20° C \div +70°C					
Range di temperatu	ıra di stoccaggio	Standard = -20° C ÷ $+80^{\circ}$ C Opzione /PE = -20° C ÷ $+80^{\circ}$ C					
Materiali	Testa del filtro	Ghisa					
	Bicchierino del filtro	Acciaio al carbonio					
Protezione della sup	perficie	Zincatura con passivazione nera					
Resistenza alla corr	rosione	Test in nebbia salina (EN ISO 9227) > 600 h					
Resistenza alla fatio	ca	min. 1 x 106 cicli a 0 ÷ 250 bar					
Conformità		Certificato NFPA T3.10.5.1, ISO 10771, ISO 3968 Direttiva RoHS 2011/65/UE come ultimo aggiornamento con 2015/863/UE Regolamento REACH (CE) n°1907/2006					

6 CARATTERISTICHE IDRAULICHE - con olio minerale ISO VG 46 a 50°C (viscosità 32 mm²/s)

Dimensioni del filtro		FPE	3-10	FPE	3-15		FPB-20			FPE	3-30	
Lunghezza del filtro		Α	В	Α	В	Α	В	С	Α	В	С	D
Portata massima (I/min)	F03	42	65	44	79	83	98	127	96	182	234	279
$a \Delta p = 1 bar$	F06	57	82	64	109	119	138	173	140	246	295	340
Filtro con by-pass -R	F10	75	93	95	137	172	194	232	203	294	333	380
(vedere nota)	F20	90	100	132	160	225	246	281	261	343	375	400
Portata massima (I/min)	F03	35	51	36	55	66	78	103	76	133	211	237
a $\Delta p = 1$ bar	F06	55	65	61	76	95	111	142	102	207	249	306
Filtro senza by-pass -N	F10	64	89	75	126	145	165	202	176	265	314	350
(vedere nota)	F20	85	98	116	154	204	226	263	232	328	369	380
Pressione di lavoro massima	[bar]						250					
Pressione di scoppio	[bar]						> 750					

Nota: Le portate massime si misurano con $\Delta p = 1$ bar e viscosità 32 mm²/s. In condizioni differenti vedere sezione $\frac{10}{10}$ per le dimensioni del filtro

7 ELEMENTI FILTRANTI F FILTRATION PLUS

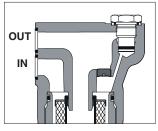
Materiale		Microfibra inorganica	
Grado di filtrazione come specificato nella norma ISO16889	F03	β _{5μm (c)} ≥1000	
	F06	β _{7μm (c)} ≥1000	
	F10	β _{12μm (c)} ≥1000	
	F20	β _{22μm (c)} ≥1000	
Pressione di collasso	R = per filtri con valvola di by-pass	21 bar	
dell'elemento filtrante	N = per filtri senza valvola di by-pass	210 bar	

8 GUARNIZIONI E FLUIDI IDRAULICI - per gli altri fluidi non compresi nella tabella seguente, consultare il nostro ufficio tecnico

Guarnizioni, temperatura fluido raccomandata	Guarnizioni NBR (standard) = -30°C ÷ +100°C Guarnizioni FKM (opzione /PE) = -25°C ÷ +120°C					
Viscosità raccomandata	15 ÷ 100 mm²/s - valore massimo consentito 2,8 ÷ 500 mm²/s					
Fluido idraulico	Tipo di guarnizioni adatte	Classificazione	Rif. Standard			
Oli minerali	NBR, FKM	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524			
Ininfiammabile senza acqua	FKM	HFDU, HFDR	ISO 12922			

9 VALVOLA DI BY-PASS

Filtro con valvola di by-pass - versione -R


Il filtro con valvola di by-pass ① si utilizza in combinazione con elementi filtranti PSH-*-R con pressione di collasso a 21 bar.

La valvola di by-pass consente al flusso di olio di aggirare l'elemento filtrante in particolari condizioni:

- protegge l'elemento filtrante dai picchi di pressione che potrebbero generarsi, specialmente in caso di avviamento a freddo. In tali casi la valvola si apre solo nell'istante necessario a scaricare il picco di pressione, limitando la quantità di olio che aggira il filtro.
- consente il passaggio del flusso di olio in caso di elemento filtrante completamente intasato ($\Delta p > 6$ bar). Questa situazione deve essere evitata con attenzione attraverso una manutenzione programmata, in caso contrario l'olio contaminato passa dal lato pulito del filtro e quindi circola nel sistema idraulico. L'elemento filtrante deve essere sostituito prima che si verifichi l'intasamento. Pertanto, è caldamente raccomandato l'utilizzo dell'indicatore differenziale di intasamento CID-V (visivo, opzione V) o CID-E (elettrico, opzioni L o M).

OUT

FPB-*-F

FPB-*-N

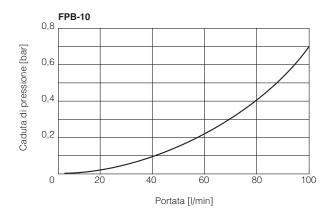
Filtro senza valvola di by-pass - versione - N

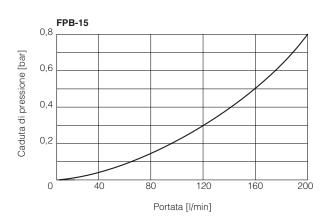
La versione di filtro senza valvola di by-pass è consigliata quando il sistema idraulico deve essere assolutamente protetto dalla contaminazione per evitare il rischio che il contaminante passi attraverso la valvola di by-pass.

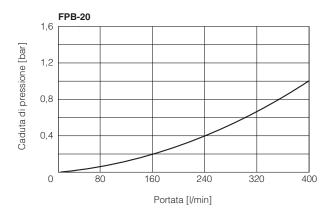
Il filtro senza valvola di by-pass deve essere utilizzato in combinazione con elementi filtranti PSH-N con pressione di collasso a 210 bar

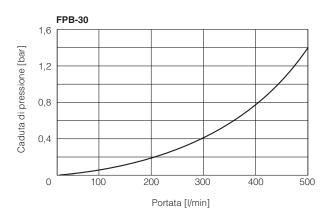
10 DIMENSIONI DEI FILTRI

Per le dimensioni dei filtri è necessario considerare la Δp totale alla portata massima a cui il filtro deve funzionare. La Δp totale è data dalla somma della Δp della testa del filtro e della Δp dell'elemento filtrante:


 Δp totale = Δp della testa del filtro + Δp dell'elemento filtrante


Nelle migliori condizioni la Δp totale non deve superare 1,0 bar


Vedere le sezioni successive per calcolare la Δp della testa del filtro e la Δp dell'elemento filtrante


10.1 DIAGRAMMI Q/∆p DELLA TESTA DEL FILTRO

La caduta di pressione della testa del filtro dipende principalmente dalle dimensioni delle bocche e dalla densità del fluido
Nei seguenti diagrammi sono riportate le caratteristiche di Δp della testa del filtro basate su olio minerale con densità 0,86 kg/dm³ e viscosità 32 mm²/s

10.2 Δp dell'ELEMENTO FILTRANTE

La caduta di pressione attraverso il filtro dipende da:

- dimensioni dell'elemento filtrante
- grado di filtrazione
- viscosità del fluido

La Δp dell'elemento filtrante è data dalla formula:

$$\Delta p$$
 dell'elemento filtrante = Q $\times \frac{Gc}{1000} \times \frac{Viscosità}{32}$

Q = portata di lavoro (I/min)

Gc = Coefficiente di gradiente (mbar/(l/min)).
I valori Gc sono riportati nella seguente tabella

Viscosità = viscosità effettiva del fluido in condizioni di lavoro (mm²/s)

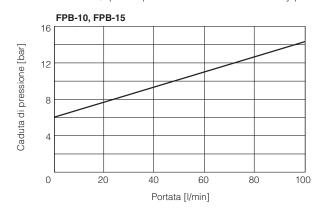
Coefficiente di gradiente Gc degli elementi filtranti PSH

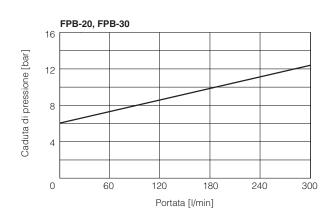
Dimensioni dell'elemento filtrante		10		20			30			
Lunghezza dell'e	elemento filtrante	Α	В	Α	В	С	Α	В	С	D
Tipo di elemento filtrante	Grado di filtrazione	Gc Coefficiente di gradiente								
	F03	21,30	10,84	11,07	9,23	6,74	10,26	4,82	3,27	2,30
R per filtri con	F06	13,97	6,79	7,27	6,06	4,43	6,73	2,98	1,99	1,26
valvola di by-pass	F10	8,39	4,42	4,45	3,71	2,71	4,12	2,02	1,36	0,70
	F20	4,78	2,93	2,87	2,39	1,75	2,66	1,21	0,77	0,40
	F03	26,03	16,72	14,19	11,83	8,64	13,00	7,15	3,87	3,21
N per filtri senza valvola di by-pass	F06	14,77	11,25	9,50	7,92	5,79	9,63	4,00	2,93	1,80
	F10	11,57	5,25	5,66	4,72	3,45	5,05	2,57	1,67	1,10
	F20	6,13	3,34	3,41	2,84	2,07	3,33	1,44	0,83	0,70

Esempio:

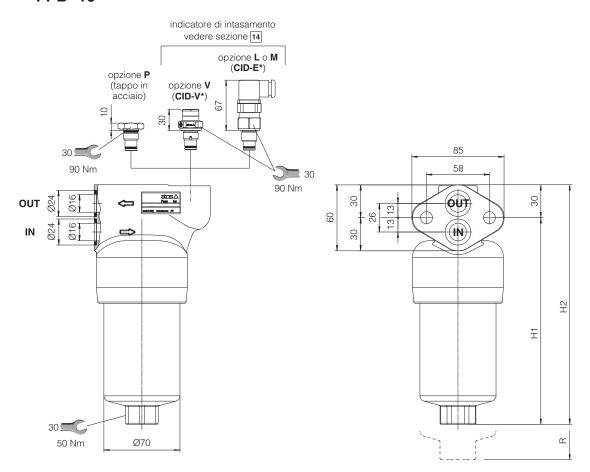
Calcolo della Δp totale per filtri di tipo FPB-10-B-F10-R a Q = 80 l/min e viscosità 46 mm²/s (elemento filtrante PSH-10-B-F10-R)

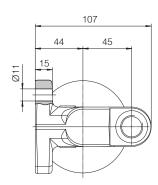
 $\Delta \mathbf{p}$ della testa del filtro = 0,41 bar

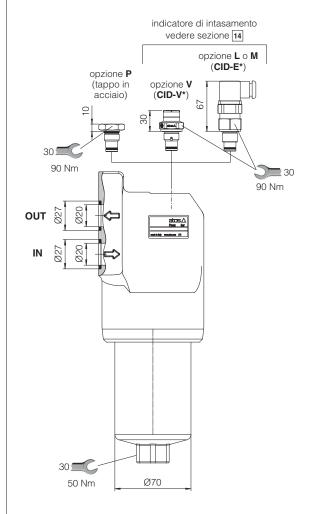

Gr = 4,42 mbar/(I/min)

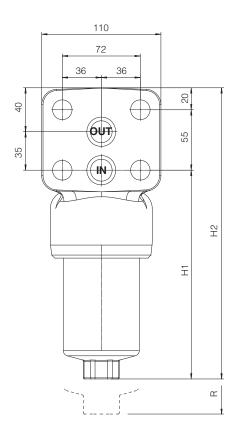

$$\Delta$$
p dell'elemento filtrante = 80 X $\frac{4,42}{1000}$ X $\frac{46}{32}$ = 0,51 bar

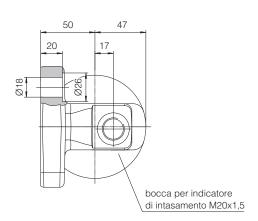
 Δ p totale = 0,41 + 0,51 = **0,92** bar


$\fbox{11}$ VALVOLA DI BY-PASS - con olio minerale ISO VG46 a 50°C (viscosità = 32 mm²/s)


DIAGRAMMI Q/Δp della portata attraverso la valvola di by-pass

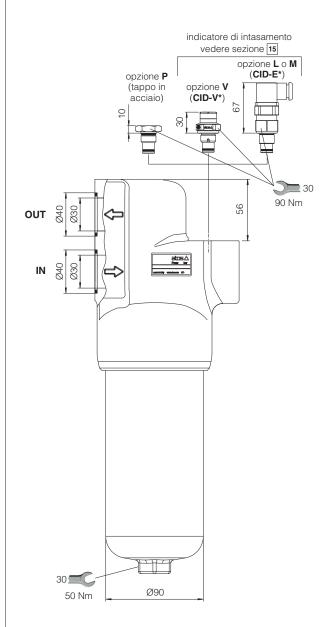

FPB-10

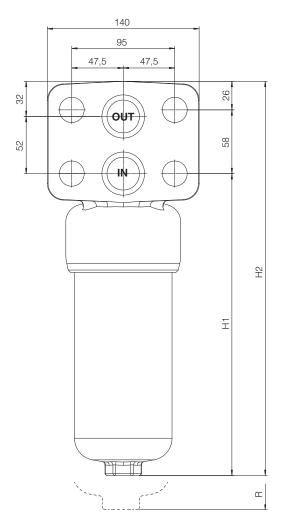


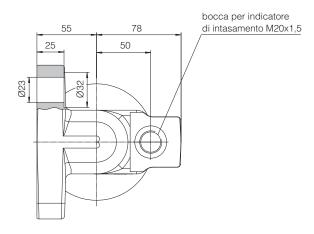


Codice	H1	H2	R (rimozione elemento)	Massa (kg)
FPB-10-A	188	226	110	3,8
FPB-10-B	281	319	110	4,9

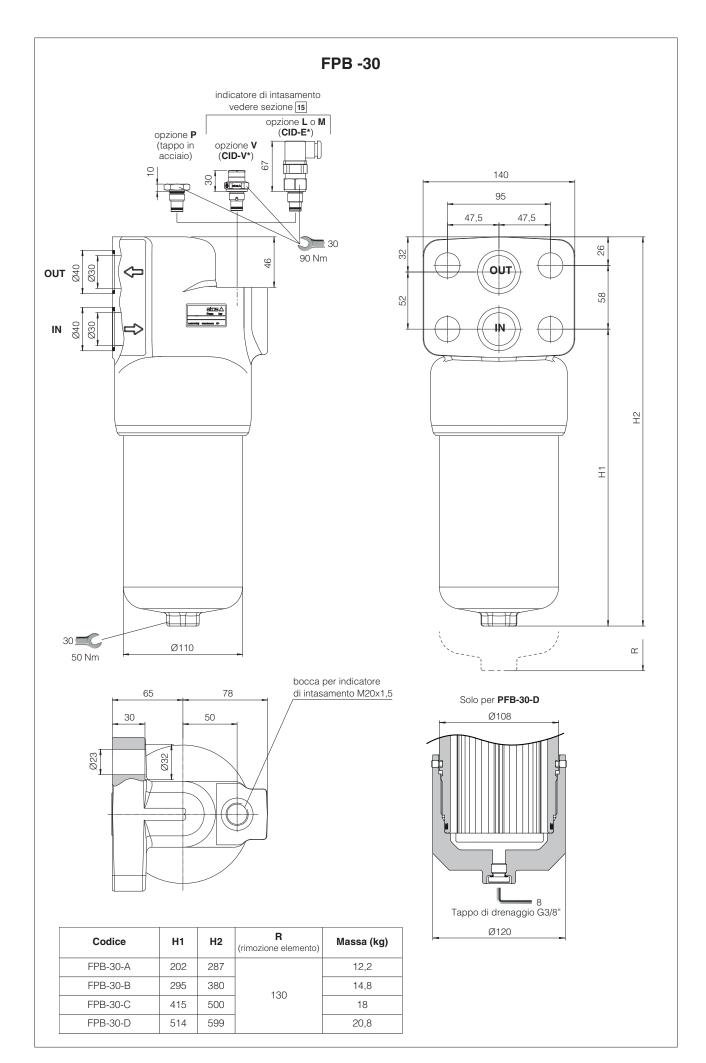
FPB-15

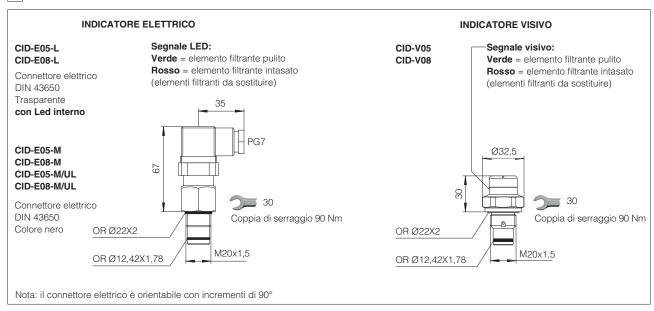






Codice	H1	H2	R (rimozione elemento)	Massa (kg)
FPB-15-A	190	265	110	6
FPB-15-B	283	358	110	7,1


FPB-20


Codice	H1	H2	R (rimozione elemento)	Massa (kg)
FPB-20-A	240	324		9,8
FPB-20-B	299	383	120	11
FPB-20-C	369	453		12,3

13 CARATTERISTICHE DEGLI INDICATORI DIFFERENZIALI DI INTASAMENTO

Codice di identificazione		CID-E* EL	ETTRICO	CID-V* VISIVO	
Pressione di commut	a- CID-E05, CID-V05	5 bar	± 10%	5 bar ± 15%	
zione differenziale	CID-E08, CID-V08	8 bar	8 bar ± 10%		
Pressione massima		450	420 bar		
Pressione differenzia	ale massima		200 bar		
Temperatura ambier	nte	-25°C ÷	+100°C	-25°C ÷ +80°C	
Collegamento idrauli	ico		M20x1,5		
Fattore d'utilizzo			100%		
Vita meccanica			1 x 10 ⁶ operazioni		
Massa (kg)		0,	16	0,11	
Connessione elettric	a	Collegamento con spina elettric con pressac	-		
Alimentazione	CID-E05-L, CID-E08-L	24 Vpc	-		
Alimentazione	CID-E05-M, CID-E08-M	14 Vpc ÷ 30 Vpc	125 Vac ÷ 250 Vac	-	
Corrente massima -	resistiva (induttiva)	5 A (4 A) ÷ 4 A (3 A)	5 A (3 A) ÷ 3 A (2 A)	-	
Indice di protezione s	econdo DIN EN 60529	IP65 con rispet	ttivo connettore	-	
Schema di commuta	zione	CID-*-L	CID-*-M		
	elemento filtrante pulito	1 (+) 2 NC 3 NO	1 C 2 NC 3 NO	VERDE	
	elemento filtrante intasato	1 (+) GAR 2 NC 1 (+) 3 NO	1 C 2 NC 3 NO	ROSSO	

14 DIMENSIONI DEGLI INDICATORI DIFFERENZIALI DI INTASAMENTO

NOTA: L'indicatore differenziale con termostato CID-T e il trasmettitore elettronico differenziale con segnale in uscita 4÷20 mA CID-Z sono disponibili su richiesta

15 INSTALLAZIONE E MESSA IN FUNZIONE

La pressione di lavoro massima del sistema non deve superare la pressione di lavoro massima del filtro (350 bar).

Durante l'installazione del filtro, prestare attenzione a rispettare la direzione della portata, indicata dalle frecce sulla testa del filtro.

Il filtro deve essere montato preferibilmente con il bicchierino rivolto verso il basso.

Accertarsi che vi sia spazio sufficiente per la sostituzione dell'elemento filtrante, vedere la dimensione "R" nella sezione 13.

Non far funzionare mai il sistema senza elemento filtrante.

Per filtri ordinati con indicatore di intasamento:

- togliere il tappo in plastica dalla bocca dell'indicatore sulla testa del filtro
- montare l'indicatore di intasamento e bloccarlo alla coppia prescritta

Durante l'avviamento a freddo (temperatura del fluido inferiore a 30°C), l'indicatore di intasamento può fornire un segnale falso a causa dell'elevata viscosità del fluido.

Per evitare segnali falsi, si può utilizzare un indicatore differenziale di intasamento con termostato CID-T.

16 MANUTENZIONE

Sostituire l'elemento filtrante non appena l'indicatore di intasamento si attiva per segnalare la condizione di ostruzione nel filtro.

Per filtri senza indicatore di intasamento, l'elemento filtrante deve essere sostituito in base alle raccomandazioni del produttore del sistema.

Selezionare il nuovo elemento filtrante in base al codice di identificazione riportato sulla targhetta del filtro, vedere sezione 18.

Per la sostituzione dell'elemento filtrante, procedere come segue:

- rilasciare la pressione di sistema; il filtro non è dotato di dispositivo di sfiato della pressione (solo per PFB-30-D è presente un tappo di drenaggio G1/4" sul fondo del bicchierino)
- prestare attenzione alla temperatura del fluido e a quella superficiale del filtro. Indossare sempre guanti e occhiali di protezione di tipo adatto
- svitare il bicchierino ② dalla testa del filtro ① ruotandolo in senso antiorario (vista dal lato inferiore)
- smontare l'elemento filtrante sporco 3 tirandolo delicatamente
- lubrificare la guarnizione del nuovo elemento filtrante e inserirlo sopra lo zaffo nella testa del filtro
- pulire il bicchierino internamente, controllare l'o-ring (6) e sostituirlo se danneggiato
- lubrificare l'o-ring e le filettature e avvitare manualmente il bicchierino alla testa del filtro ruotandolo in senso orario (vista dal lato inferiore). Serrare alla coppia raccomandata.

ATTENZIONE: Gli elementi filtranti sporchi non possono essere puliti né riutilizzati. Sono classificati come "rifiuti pericolosi" e quindi devono essere smaltiti da società autorizzate secondo le norme di legge locali.

16.1 KIT GUARNIZIONI

Tipo di filtro	Codice del kit guarnizioni (NBR)		
FPB-10	GUARN FPB-10	GUARN FPB-10 /PE	4+5+6+7
FPB-15	GUARN FPB-15	GUARN FPB-15 /PE	4+5+6+7
FPB-20	GUARN FPB-20	GUARN FPB-20 /PE	4+5+6+7
FPB-30	GUARN FPB-30	GUARN FPB-30 /PE	4+5+6+7+8+9+10

(1) Le guarnizioni (8) e (9) vengono fornite in kit ma sono utilizzate solo per la serie FPB-30-D

17 TARGHETTA DI IDENTIFICAZIONE DEL FILTRO

- 1 Codice di identificazione del filtro completo
- 2 Codice di identificazione dell'elemento filtrante
- 3 Pressione di lavoro massima
- 4 Codice matrice del filtro

17.1 IDENTIFICAZIONE DELL'ELEMENTO FILTRANTE

18 DOCUMENTAZIONE CORRELATA

LF010 Contaminazione del fluido **LF020** Linee guida sulla filtrazione