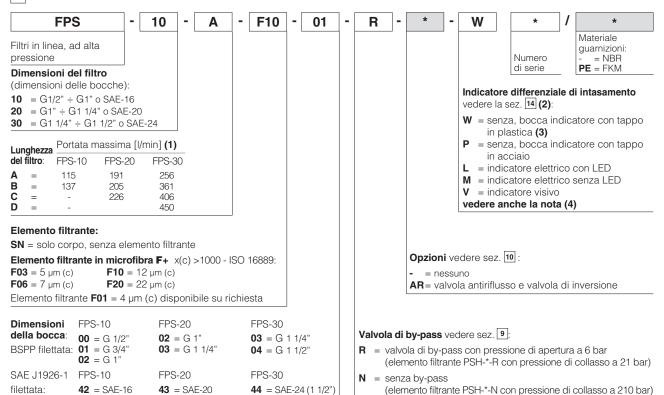


Filtri in linea, ad alta pressione tipo FPS

Bocche filettate

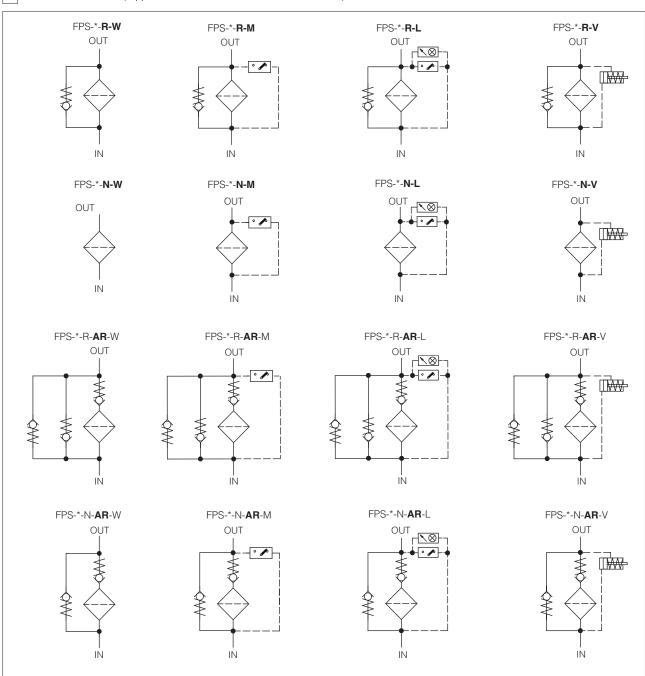
FPS

I filtri in linea sono progettati per l'installazione sulla linea di pressione a valle della pompa, per garantire un'elevata pulizia del fluido in circolo nel sistema idraulico. Proteggono i componenti sensibili dalla contaminazione presente nel fluido di lavoro e sono particolarmente indicati per sistemi con valvole proporzionali.

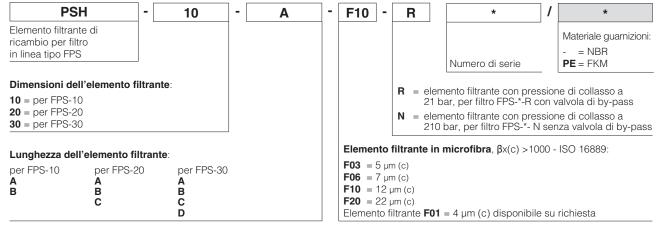

- tre dimensioni della testa
- dimensioni della bocca:

da G1/2" a G1 1/2" SAE-16, SAE-20, SAE-24

- Gli elementi in microfibra Filtration Plus garantiscono elevata efficienza, bassa caduta di pressione, DHC elevata e prestazioni durevoli. Pressione di collasso: 21 bar per filtri dotati di valvola di by-pass oppure 210 bar per filtri senza by-pass
- grado di filtrazione 5 7 12 22 μm(c) (x (c) >1000, ISO 16889).
- versioni senza o con valvola di by-pass con pressione di apertura pari a 6 bar.
- senza o con indicatore differenziale di intasamento


Portata massima **450 l/min**Pressione di lavoro massima **420 bar**

1 CODICE DI IDENTIFICAZIONE DEI FILTRI COMPLETI



Nota: i filtri utilizzabili in atmosfere potenzialmente esplosive sono disponibili su richiesta, contattare l'ufficio tecnico Atos

- (1) Le portate massime sono misurate con: Δp 1 bar, elemento filtrante F20, dimensioni bocca massime, opzione -R, viscosità 32 mm²/s vedere anche la sezione 6. In condizioni differenti vedere la sezione 11 per le dimensioni del filtro
- (2) L'indicatore di intasamento viene fornito smontato dal filtro. La bocca dell'indicatore sulla testa del filtro è chiusa da un tappo in plastica
- (3) Il tappo in plastica (opzione W) è montato in fabbrica per impedire l'ingresso di impurità nel filtro attraverso la bocca dell'indicatore di intasamento. L'indicatore di intasamento deve essere montato sul filtro prima della messa in funzione. Non montare il filtro con il cappuccio in plastica sul sistema idraulico
- (4) L'indicatore differenziale di intasamento CID-E*-M/UL con certificazione cURus è disponibile su richiesta, vedere la sezione L'indicatore differenziale con termostato CID-T e il trasmettitore elettronico differenziale con segnale di uscita 4÷20 mA CID-Z sono disponibili su richiesta, vedere la sezione 4

4 CODICE DI IDENTIFICAZIONE DEGLI INDICATORI DIFFERENZIALI DI INTASAMENTO - solo per ricambio - vedere la sezione 14 e 15

05

Indicatore differenziale di intasamento di ricambio per filtro in linea

CID

Tipo di indicatore:

E = elettrico

 \mathbf{V} = visivo

T = termostato (disponibile su richiesta)

Z = trasmettitore elettronico 4÷20 mA (disponibile su richiesta)

Pressione di commutazione differenziale (solo per CID-E e CID-V):

05 = 5 bar per filtri con valvola di by-pass

08 = 8 bar per filtri senza valvola di by-pass

M * Materiale guarnizioni:
- = NBR
PE = FKM

LED opzionale - solo per CID-E

L = con LED

M = senza LED

M/UL = senza LED, certificato secondo lo standard Nord Americano cURus (disponibile su richiesta)

5 CARATTERISTICHE GENERALI

Posizione di installa	zione	Posizione verticale con contenitore rivolto verso il basso						
Temperatura ambie	ente	Standard = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ opzione /PE = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$						
Temperatura di stoco	caggio	Standard = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$ opzione /PE = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$						
Materiali Testa del filtro		Shisa Shisa						
	Contenitore del filtro	Acciaio al carbonio						
Protezione della superficie		Zincatura con passivazione nera						
Resistenza alla corro	sione	Test in nebbia salina (EN ISO 9227) > 600 h						
Resistenza alla fatica	1	min. 1 x 10 ⁶ cicli a 420 bar						
Conformità		Certificato NFPA T3.10.5.1, ISO 10771, ISO 3968 Direttiva RoHS 2011/65/UE come ultimo aggiornamento con 2015/863/UE Regolamento REACH (CE) n°1907/2006						

6 CARATTERISTICHE IDRAULICHE - con olio minerale ISO VG 46 a 50°C (viscosità 32 mm²/s)

Ε

Dimensioni filtro		FPS-10				FPS-20					FPS-30										
Codice dimensioni bocch	Codice dimensioni bocche		00		01		02, 42		02		03, 43		03				04, 44				
Dimensioni bocche		G1	G1/2"		G3/4		G1", SAE-16		G1"		G1"1/4, SAE-20		G1"1/4				G1/"1/2, SAE-24				
Lunghezza del filtro		Α	В	Α	В	Α	В	Α	В	С	Α	В	С	Α	В	С	D	Α	В	С	D
Portata massima (I/min)	F03	36	56	40	62	43	73	73	84	105	80	93	118	88	164	213	259	91	172	226	277
a $\Delta p = 1$ bar	F06	48	69	53	79	61	98	100	112	135	112	127	154	127	225	277	330	132	239	297	356
Filtro con by-pass -R	F10	63	79	72	92	86	120	135	148	170	154	170	195	183	275	321	380	193	295	347	414
(vedere nota)	F20	78	87	90	101	115	137	166	178	196	191	205	226	240	333	373	412	256	361	406	450
Portata massima (I/min)	F03	31	43	34	48	36	53	60	70	88	65	76	98	71	120	191	215	74	125	202	228
a $\Delta p = 1$ bar	F06	47	55	52	61	58	71	83	94	116	91	105	131	93	187	228	290	97	197	242	311
Filtro senza by-pass -N	F10	54	75	60	87	70	111	117	130	153	133	149	176	158	245	298	343	166	260	321	372
(vedere nota)	F20	72	85	82	99	103	131	154	166	187	177	192	215	210	315	367	380	223	340	400	414
Pressione di lavoro massima	a [bar]										42	20									
Pressione di scoppio		> 1260																			

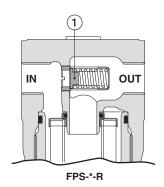
Nota: Le portate massime sono misurate con $\Delta p = 1$ bar e viscosità 32 mm²/s. In condizioni differenti vedere la sezione $\boxed{11}$ per il dimensionamento del filtro

7 ELEMENTI FILTRANTI

Materiale		Microfibra inorganica			
Grado di filtrazione come specificato nella	F03	β4,5μm (c) ≥1000			
	F06	β _{7μm (c)} ≥1000			
norma ISO16889	F10	β _{12μm (c)} ≥1000			
	F20	β _{22μm (c)} ≥1000			
Pressione di collasso dell'elemento filtrante	R = per filtri con valvola di by-pass	21 bar			
	N = per filtri senza valvola di by-pass	210 bar			

8 GUARNIZIONI E FLUIDI IDRAULICI - per gli altri fluidi non compresi nella tabella seguente, consultare il nostro ufficio tecnico

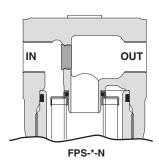
Guarnizioni, temperatura fluido raccomandata	Guarnizioni NBR (standard) = -30°C ÷ +100°C Guarnizioni FKM (opzione /PE) = -25°C ÷ +120°C						
Viscosità raccomandata	15 ÷ 100 mm²/s - limiti max ammessi 2,8 ÷ 500 mm²/s						
Fluido idraulico	Tipo di guarnizioni adatte	Classificazione	Rif. Standard				
Oli minerali	NBR, FKM	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524				
Ininfiammabile senza acqua	FKM	HFDU, HFDR	ISO 12922				


9 VALVOLA DI BYPASS

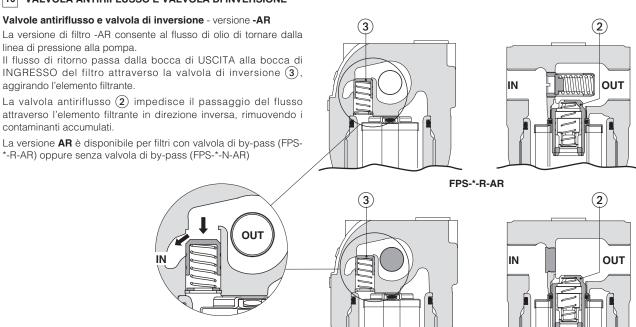
Filtro con valvola di by-pass - versione -R

Il filtro con valvola di by-pass (1) si utilizza in combinazione con elementi filtranti PSH-*-R con pressione di collasso 21 bar.

La valvola di by-pass consente al flusso di olio di aggirare l'elemento filtrante in particolari condizioni:


- protegge l'elemento filtrante dai picchi di pressione che potrebbero generarsi, specialmente in caso di avviamento a freddo. In tali casi la valvola si apre solo nell'istante necessario a scaricare il picco di pressione, limitando la quantità di olio che aggira il filtro.
- consente il passaggio del flusso di olio in caso di elemento filtrante completamente ostruito ($\Delta p > 6$ bar). Questa situazione deve essere evitata con attenzione attraverso una manutenzione programmata, in caso contrario l'olio contaminato passa dal lato pulito del filtro e quindi circola nel sistema idraulico. L'elemento filtrante deve essere sostituito prima che si verifichi l'intasamento, a tal fine l'utilizzo dell'indicatore differenziale di intasamento CID-V (visivo, opzione V) o CID-E (elettrico, opzioni L o M) è caldamente raccomandato.

Filtro senza valvola di by-pass - versione - N


La versione di filtro senza valvola di by-pass si raccomanda quando il sistema idraulico deve essere assolutamente protetto dalla contaminazione, quindi evitando il rischio che il contaminante passi attraverso la valvola di by-pass.

Il filtro senza valvola di by-pass deve essere utilizzato in combinazione con elementi filtranti PSH-N con pressione di collasso 210 bar

FPS-*-N-AR

10 VALVOLA ANTIRIFLUSSO E VALVOLA DI INVERSIONE

11 DIMENSIONAMENTO DEI FILTRI

Per le dimensioni dei filtri è necessario considerare la Δp totale alla portata massima a cui il filtro deve funzionare.

Il Δp totale è dato dalla somma del Δp della testa del filtro e del Δp dell'elemento filtrante:

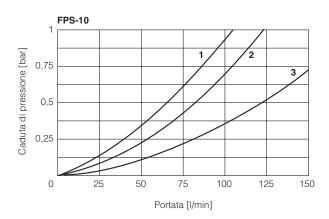
Δp totale = Δp della testa del filtro + Δp dell'elemento filtrante

Nelle migliori condizioni il Δp totale non deve superare 1,0 bar

Vedere le sezioni successive per calcolare il Δp della testa del filtro e il Δp dell'elemento filtrante

11.1 DIAGRAMMI Q/∆p della testa del filtro

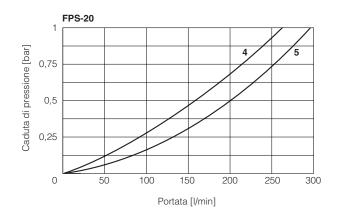
La caduta di pressione della testa del filtro dipende principalmente dalle dimensioni delle bocche e dalla densità del fluido


Nei seguenti diagrammi sono riportate le caratteristiche di Δp della testa del filtro basate su olio minerale con densità 0,86 kg/dm³ e viscosità 30 mm²/s

FPS-10

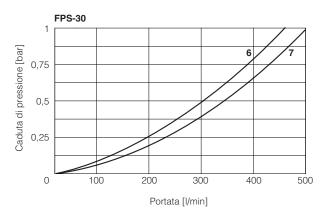
1 = FPS-10*** 00 (G 1/2")

2 = FPS-10*** 01 (G 3/4")


3 = FPS-10*** 02 (G 1") FPS-10*** 42 (SAE-16)

FPS-20

4 = FPS-20*** 02 (G 1")


5 = FPS-20*** 03 (G 11/4") FPS-20*** 43 (SAE-20)

FPS-30

6 = FPS-30*** 03 (G 11/4")

7 = FPS-30*** 04 (G 11/2") FPS-30*** 44 (SAE-24)

11.2 Δp dell'ELEMENTO FILTRANTE

La caduta di pressione attraverso il filtro dipende da:

- dimensioni dell'elemento filtrante
- grado di filtrazione
- viscosità del fluido

Il Δp dell'elemento filtrante è dato dalla formula:

$$\Delta p \text{ dell'elemento filtrante} = Q \times \frac{Gc}{1000} \times \frac{Viscosità}{32}$$

Q = portata di lavoro (l/min)

Gc = Coefficiente di gradiente (mbar/(l/min)).
I valori Gc sono riportati nella seguente tabella

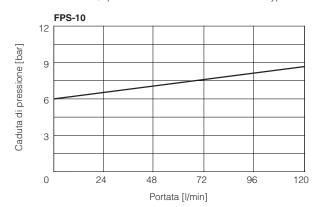
Viscosità = viscosità effettiva del fluido in condizioni di lavoro (mm²/s)

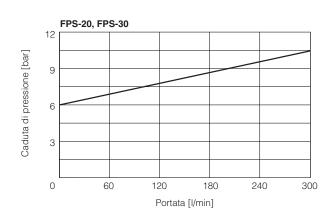
Coefficiente di gradiente Gc degli elementi filtranti PSH

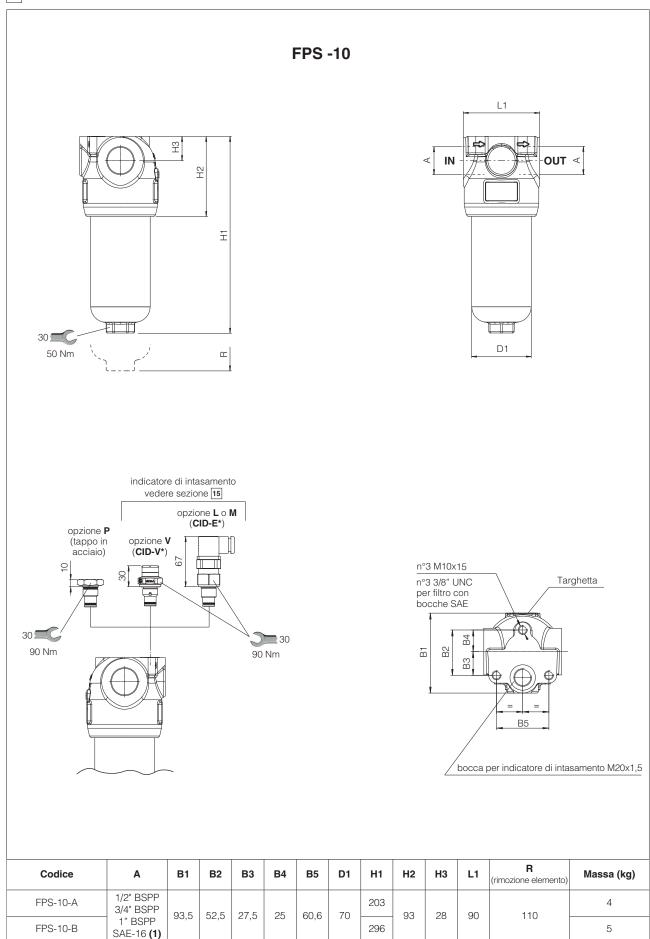
Dimensioni dell'e	1	0	20			30					
Lunghezza dell'e	Α	В	Α	В	С	Α	В	С	D		
Tipo di elemento filtrante Grado di filtrazione			Gc Coefficiente di gradiente								
	F03	21,30	10,84	11,07	9,23	6,74	10,26	4,82	3,27	2,30	
R	F06	13,97	6,79	7,27	6,06	4,43	6,73	2,98	1,99	1,26	
per filtri con valvola di by-pass	F10	8,39	4,42	4,45	3,71	2,71	4,12	2,02	1,36	0,70	
	F20	4,78	2,93	2,87	2,39	1,75	2,66	1,21	0,77	0,40	
	F03	26,03	16,72	14,19	11,83	8,64	13,00	7,15	3,87	3,21	
N per filtri senza valvola di by-pass	F06	14,77	11,25	9,50	7,92	5,79	9,63	4,00	2,93	1,80	
	F10	11,57	5,25	5,66	4,72	3,45	5,05	2,57	1,67	1,10	
	F20	6,13	3,34	3,41	2,84	2,07	3,33	1,44	0,83	0,70	

Esempio:

Calcolo del Δ p totale per filtri di tipo FPS-10-B-F10-02-R a Q = 80 l/min e viscosità 46 mm²/s (elemento filtrante PSH-10-B-F10-R) Δ p della testa del filtro = 0,24 bar

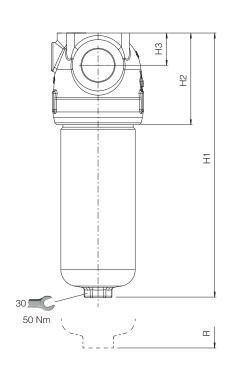

Gr = 4,42 mbar/(I/min)

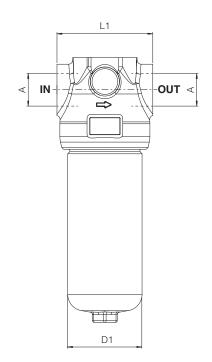

 Δ p dell'elemento filtrante = 80 X $\frac{4,42}{1000}$ X $\frac{46}{32}$ = 0,51 bar

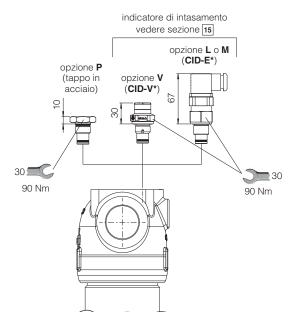

 Δ p totale = 0,24 + 0,51 = **0,75** bar

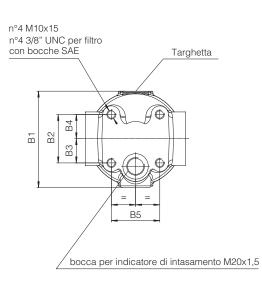
12 VALVOLA DI BY-PASS - con olio minerale ISO VG46 a 50°C (viscosità = 32 mm²/s)

DIAGRAMMI Q/Δp del flusso attraverso la valvola di bypass

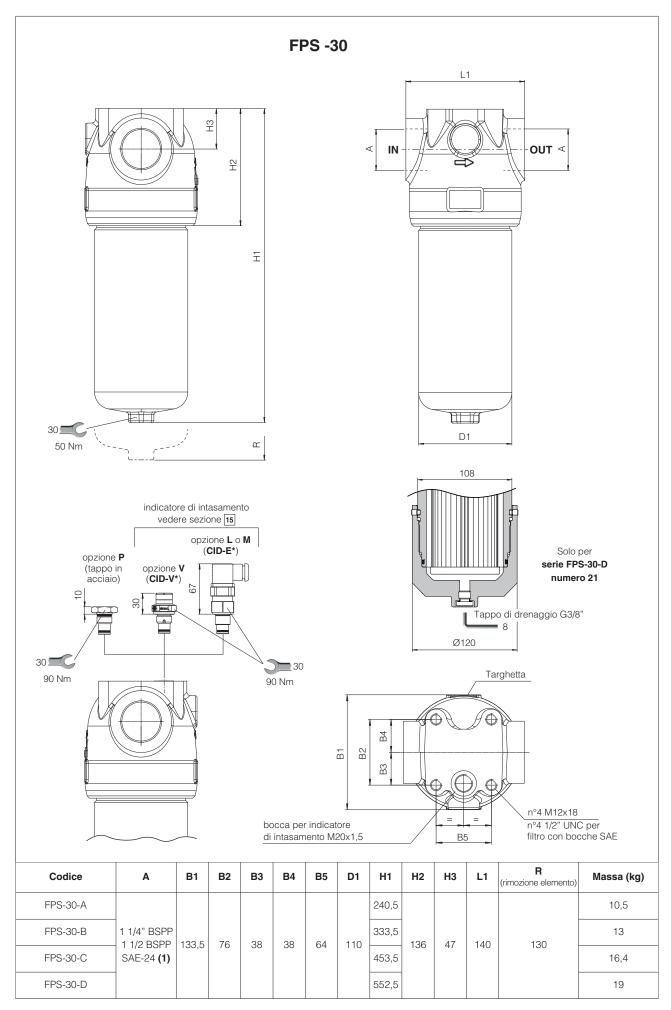


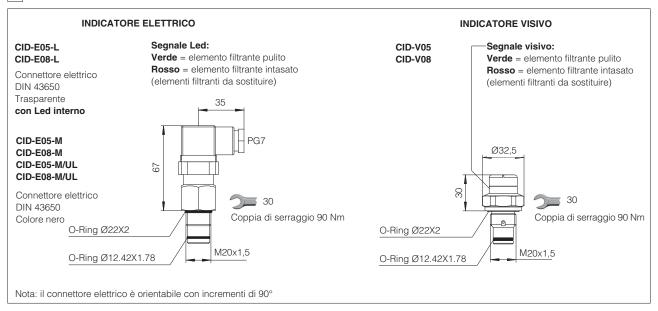





(1) SAE-16 dimensioni filettatura 1" 5/16-12-UN-2B

FPS-20




Codice	Α	B1	B2	В3	В4	B5	D1	H1	H2	Н3	L1	R (rimozione elemento)	Massa (kg)
FPS-20-A	- 1" BSPP							261					7,4
FPS-20-B	1 1/4" BSPP SAE-20 (1)	111,5	56	28	28	56	90	320	111	39	116	120	8,5
FPS-20-C	5AL-20(1)							390					9,9

14 CARATTERISTICHE DEGLI INDICATORI DIFFERENZIALI DI INTASAMENTO

Codice di identificazione	е	CID-E* EL	CID-V* VISIVO	
Pressione di commutazio-	CID-E05, CID-V05	5 bar	± 10%	5 bar ± 15%
ne differenziale	CID-E08, CID-V08	8 bar	8 bar ± 10%	
Pressione massima		450	420 bar	
Pressione differenziale m	assima		200 bar	
Temperatura ambiente		-25°C ÷	+100°C	-25°C ÷ +80°C
Collegamento idraulico			M20x1,5	
Fattore d'utilizzo			100%	
Vita meccanica			1 x 10 ⁶ operazioni	
Massa (kg)		0,	0,11	
Connessione elettrica		Collegamento con spina elettrica secondo la	-	
Alimentazione	CID-E05-L, CID-E08-L	24 Vpc	± 10%	-
Allitieritazione	CID-E05-M, CID-E08-M	14 Vpc ÷ 30 Vpc	-	
Corrente massima - resis	tiva (induttive)	5 A (4 A) ÷ 4 A (3 A)	5 A (3 A) ÷ 3 A (2 A)	-
Indice di protezione di prote	ezione secondo DIN EN 60529	IP65 con connettor	-	
Schema di commutazione	е	CID-*-L	CID-*-M	
	elemento filtrante pulito	1 (+)	1 C 2 NC 3 NO	VERDE
	elemento filtrante ostruito	1 (+) 3 NO	1 C 2 NC 3 NO	ROSSO

15 DIMENSIONI DEGLI INDICATORI DIFFERENZIALI DI INTASAMENTO

NOTA: L'indicatore differenziale con termostato CID-T e il trasmettitore elettronico differenziale con segnale di uscita 4÷20 mA CID-Z sono disponibili su richiesta

16 INSTALLAZIONE E MESSA IN FUNZIONE

La pressione di lavoro massima del sistema non deve superare la pressione di lavoro massima del filtro (420 bar).

Durante l'installazione del filtro, fare attenzione a rispettare la direzione del flusso, indicato dalla freccia sulla testa del filtro.

Il filtro deve essere montato preferibilmente con il contenitore rivolto verso il basso.

Il filtro deve essere fissato adeguatamente utilizzando i fori di fissaggio filettati sulla testa del filtro.

Accertarsi che vi sia spazio sufficiente per la sostituzione dell'elemento filtrante, vedere la dimensione "R" nella sezione 13.

Non far funzionare mai il sistema senza elemento filtrante.

Per filtri ordinati con indicatore di intasamento:

- togliere il tappo in plastica dalla bocca dell'indicatore sulla testa del filtro
- montare l'indicatore di intasamento e bloccarlo alla coppia prescritta

Durante l'avviamento a freddo (temperatura del fluido inferiore a 30°C), l'indicatore di intasamento può fornire un segnale falso a causa dell'elevata viscosità del fluido.

Per evitare segnali falsi, si può utilizzare un indicatore differenziale di intasamento filettato CID-T.

17 MANUTENZIONE

Sostituire l'elemento filtrante non appena l'indicatore di intasamento si attiva per segnalare la condizione di intasamento nel filtro.

Per filtri senza indicatore di intasamento, l'elemento filtrante deve essere sostituito in base alle raccomandazioni del produttore del sistema.

Selezionare il nuovo elemento filtrante in base al codice di identificazione riportato sulla targhetta del filtro, vedere la sezione 18

Per la sostituzione dell'elemento filtrante, procedere come segue:

- rilasciare la pressione del sistema; il filtro non è dotato di dispositivo di sfiato della pressione
- prestare attenzione alla temperatura del fluido e a quella superficiale del filtro. Indossare sempre guanti e occhiali di protezione di tipo adatto
- svitare il contenitore ② dalla testa del filtro ① ruotandolo in senso antiorario (vista dal lato inferiore)
- smontare l'elemento filtrante sporco 3 tirandolo delicatamente
- lubrificare la guarnizione del nuovo elemento filtrante e inserirlo sopra il codolo nella testa del filtro
- pulire il contenitore internamente, controllare l'o-ring (6) e sostituirlo se danneggiato
- lubrificare l'o-ring e le filettature e avvitare manualmente il contenitore alla testa del filtro ruotandolo in senso orario (vista dal lato inferiore). Serrare alla coppia raccomandata.

ATTENZIONE: Gli elementi filtranti sporchi non possono essere puliti né riutilizzati. Sono classificati come "rifiuti pericolosi" e quindi devono essere smaltiti da società autorizzate secondo le norme di legge locali.

17.1 KIT DI GUARNIZIONI

Tipo di filtro	Codice del kit guarnizioni (NBR)	Codice del kit guarnizioni (FKM)	Composizione del kit di guarnizioni
FPS-10	GUARN FPS-10	GUARN FPS-10 /PE	4+5+6+7
FPS-20	GUARN FPS-20	GUARN FPS-20 /PE	4+5+6+7
FPS-30	GUARN FPS-30	GUARN FPS-30 /PE	4+5+6+7+8+9 (1)

(1) Le guarnizioni (8) e (9) vengono fornite in kit ma sono utilizzate solo per la serie FPS-30-D

18 TARGHETTA DI IDENTIFICAZIONE DEL FILTRO

- 1 Codice di identificazione del filtro completo
- 2 Codice di identificazione dell'elemento filtrante
- 3 Pressione di lavoro massima
- 4 Data matrix del filtro

18.1 IDENTIFICAZIONE DELL'ELEMENTO FILTRANTE

19 DOCUMENTAZIONE CORRELATA

LF010 Contaminazione del fluido **LF020** Linee guida sulla filtrazione