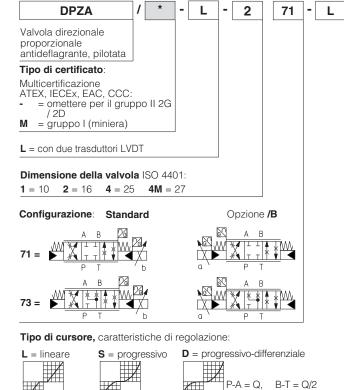


Valvole direzionali servoproporzionali antideflagranti

pilotate, con due trasduttori LVDT e ricoprimento positivo del cursore - ATEX, IECEx, EAC, CCC

DPZA-L

Valvole proporzionali antideflagranti ad alte prestazioni, pilotate, con due trasduttori di posizione LVDT (valvola pilota e stadio principale) e ricoprimento positivo del cursore per la miglior dinamica nei controlli direzionali e regolazioni della portata non compensata.


Sono dotate di trasduttore LVDT antideflagrante e solenoide proporzionale certificati per il funzionamento in sicurezza in ambienti pericolosi con atmosfera potenzialmente esplosiva.

- Multicertificazione ATEX, IECEx, EAC e CCC per gruppo di gas II 2G e categoria polveri II 2D
- Multicertificazione **ATEX** e **IECEx** per gruppo di gas **I M2** (miniera)

La custodia antideflagrante del solenoide e dei trasduttori impedisce la propagazione accidentale di scintille interne o fuoco all'ambiente esterno. Il solenoide è studiato anche per limitare la temperatura della superficie entro i limiti classificati.

Dimensione: **10** ÷ **27** -ISO4401 Portata massima: **180** ÷ **800 I/min** Pressione massima: **350 bar**

1 CODICE DI IDENTIFICAZIONE

5	1	M	/	*	*	1	*			
					Numero di serie	-	Materiale guarnizioni, vedere sezione 6 : - = NBR PE = FKM BT = HNBR			
					ozioni idrauliche (2):					
					= trasduttore di posizione stadio principale sul lato della bocca A (3)					
				C = fee	= feedback corrente per trasduttore di					
					posizione 4÷20 mA = drenaggio interno					
					= valvola di riduzione pressione per il pilotaggio (standard per la dimensione 10)					
					ne filettata solenoide e trasduttore					
		1		taggio pr	essacavi:					

GK = GK-1/2" M = M20x1,5NPT = 1/2" NPT

del curso		3 (L,S,D)	5 (L, DL, S, D, Q)			
DPZA-1	=	-	100			
DPZA-2	=	130	200			
DPZA-4	=	-	340			
DPZA-4M	=	-	390			
Portata nominale (I/min) a Δp 10 bar P-T						

- (1) Il cursore tipo Q è disponibile solo con la configurazione 73 e 73/B
- (2) Opzioni combinate possibili: sono possibili tutte le combinazioni

DL = lineare-differenziale

P-A = Q, B-T = Q/2P-B = Q/2, A-T = Q

(3) Nella configurazione standard, il trasduttore LVDT stadio principale è sul lato della bocca Be il solenoide pilota con trasduttore di posizione si trova sul lato A dello stadio principale

P-B = Q/2, A-T = Q

Q = per controlli P/Q (1)

2 DRIVER ELETTRONICI SEPARATI

I driver elettronici sono impostati di fabbrica con la limitazione di corrente massima per le valvole antideflagranti. Nell'ordine dei driver includere anche il codice completo della valvola proporzionale antideflagrante connessa.

Codice driver	E-BM-LEB-* /A	E-BM-LES-* /A		
Tipo	Digitale Digitale			
Formato	Guida	a DIN		
Scheda dati	GS230	GS240		

3 CARATTERISTICHE GENERALI

Posizione di installazione	Qualsiasi posizione				
Finitura superficie della piastra secondo ISO 4401	Indice di rugosità accettabile, Ra ≤ 0,8 raccomandato Ra 0,4 - rapporto di planarità 0,01/100				
Valori MTTFd secondo EN ISO 13849	75 anni, vedere tabella tecnica P007				
Temperatura ambiente	Standard = -20° C \div $+60^{\circ}$ C Opzione /PE = -20° C \div $+60^{\circ}$ C Opzione /BT = -40° C \div $+60^{\circ}$ C				
Temperatura di stoccaggio	Standard = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ Opzione /PE = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ Opzione /BT = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$				
Protezione della superficie	Zincatura con passivazione nera - test in nebbia salina (EN ISO 9227) > 200 h				
Conformità	Protezione antideflagrante, vedere sezione 7 -Custodia antideflagrante "Ex d" -Protezione contro l'ingresso di polvere combustibile mediante custodia "Ex t" -Direttiva RoHs 2011/65/UE come ultimo aggiornamento con 2015/863/UE Regolamento REACH (CE) n°1907/2006				

4 CARATTERISTICHE IDRAULICHE - con olio minerale ISO VG 46 a 50°C

	DPZA-*-1	DPZA-*-2		DPZA-*-4	DPZA-*-4M	
[bar]	bocche P, A, B, X = 350; T = 250 (10 per opzione /D); Y = 10;					
	L5, DL5, S5, D5, Q5	L3, S3, D3 L5, DL5, S5, D5, Q5				
$\Delta p = 10 \text{ bar}$	100	130	200	340	390	
$\Delta p = 30 \text{ bar}$	160	220	350	590	670	
Portata massima ammessa		320	440	680	800	
Δp max. P-T [bar]		60	60	60	60	
Pressione di pilotaggio [bar]		min. = 25; max. = 350 (opzione /G consigliabile per la pressione di pilotaggio > 150 bar)				
[cm ³]	1,4	3,7		9,0	11,3	
[l/min]	1,7	3,7		6,8	8	
Pilota [cm³/min]	100/300	10	0/300	200/500	200/600	
(2) Stadio principale [I/min]		0,2/0,6		0,3/1,0	0,3/1,0	
Tempo di risposta (1) [ms]		≤ 65		≤ 85	≤ 90	
	≤ 0,1 [% della regolazione massima]					
	± 0,1 [% della regolazione massima]					
	spostamento dello zero < 1% a ΔT = 40°C					
	Δp = 10 bar Δp = 30 bar massima ammessa [bar] [bar] [cm³] [l/min] Pilota [cm³/min]	[bar] bocc L5, DL5, S5, D5, Q5 Δp = 10 bar Δp = 30 bar 160 massima ammessa 180 [bar] 50 [bar] min. = 25; max [cm³] 1,4 [l/min] 1,7 Pilota [cm³/min] 100/300 lio principale [l/min] 0,15/0,5	[bar] bocche P, A, B, X = 3 L5, DL5, S5, D5, Q5 L3, S3, D3 Δp = 10 bar 100 130 Δp = 30 bar 160 220 massima ammessa 180 320 [bar] 50 60 [bar] min. = 25; max. = 350 (opzione production of the production o	[bar] bocche P, A, B, X = 350; T = 250 (10 per L5, DL5, S5, D5, Q5 L3, S3, D3 L3 L3, S3, D3 L3 L3, S3, D3 L3 L3, S3, D3 L3	[bar] bocche P, A, B, X = 350; T = 250 (10 per opzione /D); Y = L5, DL5, S5, D5, Q5 L3, S3, D3 L5, DL5, S5, D5, Q5 L3, S3, D3, D5, D5, D5, D5, D5, D5, D5, D5, D5, D5	

^{(1) 0 ÷100%} segnale a gradino e pressione di pilotaggio 100 bar

5 CARATTERISTICHE ELETTRICHE

Potenza massima	35 W		
Classe di isolamento	H (180°) In relazione alle temperature della superficie delle bobine del solenoide, devono essere		
Classe di Isolamento	presi in considerazione gli standard europei ISO 13732-1 e EN982		
Grado di protezione	IP66/67 secondo DIN EN60529 con pressacavi rilevante		
Fattore d'utilizzo	Utilizzo continuativo (ED=100%)		
Codice tensione	standard		
Resistenza R della bobina a 20°C	3,2 Ω		
Corrente massima solenoide	2,5 A		

6 GUARNIZIONI E FLUIDI IDRAULICI - per gli altri fluidi non compresi nella tabella seguente, consultare il nostro ufficio tecnico

Guarnizioni, temperatura fluido raccomandata		Guarnizioni NBR (standard) = -20°C ÷ +60°C, con fluidi idraulici HFC = -20°C ÷ +50°C Guarnizioni FKM (opzione /PE) = -20°C ÷ +80°C Guarnizioni HNBR (opzione /BT) = -40°C ÷ +60°C, con fluidi idraulici HFC = -40°C ÷ +50°C				
Viscosità raccomanda	ata	20 ÷ 100 mm²/s - limiti max amn	nessi 15 ÷ 380 mm²/s			
Livello di contaminazio-	funzionamento normale	ISO4406 classe 18/16/13 NAS	vedere anche la sezione filtri su www.atos.com o sul catalogo KTF			
ne massimo del fluido	vita estesa	ISO4406 classe 16/14/11. NAS1638 classe 5				
Fluido idraulico		Tipo di guarnizioni adatte	Classificazione	Rif. Standard		
Oli minerali		NBR, FKM, HNBR	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524		
Ininfiammabile senza acqua		FKM HFDU, HFDR		100 40000		
Ininfiammabile con acqua (1)		NBR, HNBR	HFC	ISO 12922		

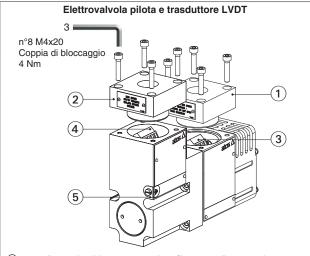
La temperatura di accensione del fluido idraulico deve essere di 50°C superiore alla temperatura massima della superficie del solenoide

(1) Limitazioni delle prestazioni in caso di fluidi ininfiammabili con acqua: -pressione di lavoro massima = 210 bar

-temperatura massima del fluido = 50°C La perdita della pressione di pilotaggio causa una posizione non definita dell'otturatore principale.

L'improvvisa interruzione della tensione di alimentazione durane il funzionamento della valvola causa l'immediata chiusura dell'otturatore principale. ATTENZIONE Questo può determinare forti incrementi di pressione nel sistema idraulico o forti decelerazioni che possono causare danni alla macchina.

⁽²⁾ a P = 100/350 bar


7 DATI DI CERTIFICAZIONE

Tipo di valvola	DP	ZA			DPZA /M	
Certificazioni	Multicertificazi ATEX IECEx	one gruppo I			ertificazione gr	
Codice certificato solenoide e trasduttore LVDT (stadio pilota)	OZA		OZAM-T			
Certificato esame tipo (1)	ATEX: CESI 02 ATEX 01 IECEx: IECEx CES 10.00 EAC:RU C - IT.A 38.B.00 CCC:202032230700324)10x 425/21		ATEX: CESI 03 A IECEx: IECEx CE		
Metodo di protezione	ATEX: Ex II 2G Ex db IIC T4/T3 Gb EX II 2D Ex tb IIIC T135°C/T200°C Db IECEX:EX db IIC T4/T3 Gb EX tb IIIC T135°C/T200°C Db EAC: 1Ex d IIC T4/T3 Gb X EX tb IIIC T135°C/T200°C Db X CCC: Ex d IIC T4/T3 Gb EX tD A21 IP66/IP67 T135°C/T200°C			ATEX: Ex M2 Ex db Mb IECEx: Ex db Mb		
Codice certificato trasduttore LVDT (stadio principale)	ETHA-4/*			ETHAM-4/*		
Certificato esame tipo (1)	ATEX: CESI 02 ATEX 015X / 06 IECEx: IECEx CES 12.006X EAC:RU C - IT. A 38.B.00425/21 CCC:2021322315003690		ATEX: CESI 03 A IECEx: IECEx CE			
Metodo di protezione	ATEX: Ex II 2G Ex db IIC T6/T5/T4 Gb Ex II 2D Ex tb IIIC T85°C/T100°C/135°C Db IECEx: Ex db IIC T6/T5/T4 Gb Ex tb IIIC T85°C/T100°C/135°C Db EAC: 1Ex d IIC T4/T3 Gb X Ex tb IIIC T135°C/T200°C Db X CCC: Ex d IIC T6/T5/T4 Gb Ex tD A21 IP66/IP67 T85°C/T135°C/T200°C			• ATEX: Ex I M2 • IECEx: Ex db I		
Classe di temperatura	T4	T3	3		-	
Temperatura superficie	≤ 135°C ≤ 200°C		0°C		≤ 150°C	
Temperatura ambiente (2)	-40 ÷ +40°C	-40 ÷ +40°C		-20 ÷ +60°C		
Standard applicabili	EN 60079-0; EN 600	79-1; EN 6	0079-31	IEC 60079-0;	IEC 60079-1;	IEC 60079-31
Ingresso del cavo: connessione filettata		GK = GK-1/2	" M = M2	0x1.5 NPT	= 1/2" NPT	

- (1) I certificati esame tipo possono essere scaricati dalla pagina www.atos.com
- (2) Nel caso in cui l'intera valvola debba resistere a una temperatura ambiente minima di -40°C, selezionare /BT nel codice di identificazione

🔼 ATTENZIONE: il lavoro di assistenza eseguito sulla valvola dagli utilizzatori finali o da personale non qualificato annulla la certificazione

8 CABLAGGIO SOLENOIDI ANTIDEFLAGRANTI E TRASDUTTORE LVDT

- ① cappellotto solenoide con connessione filettata per il montaggio pressacavi
- 2 cappellotto trasduttore con connessione filettata per montaggio pressacavi
- 3 morsettiera solenoide per collegamento cavi
- (4) morsettiera trasduttore per collegamento cavi
- (5) morsetto a vite per messa a terra equipotenziale supplementare

Cablaggio solenoide

- 1 = Bobina Terminale a 3 poli circuito stampato adatto per **2** = GND cavi con sezione trasversale fino a 2,5 mm² (max. AWG14)

Trasduttore LVDT stadio principale n°4 M4 Coppia di bloccaggio 4 Nm (2) (3

- ① cappellotto con connessione filettata per montaggio verticale pressacavi
- 2 morsettiera per collegamento cavi
- 3 morsetto a vite per messa a terra equipotenziale supplementare

Cablaggio trasduttore di posizione

- 1 = Segnale in uscita
- Terminale a 4 poli circuito stampato
- 2 = Alimentazione -15 V adatto per cavi con sezione trasver-3 = Alimentazione +15 V sale fino a 2,5 mm² (max. AWG14)
- **4** = GND

9 SPECIFICHE DEI CAVI E TEMPERATURE - i cavi di alimentazione emessa a terra devono avere le seguenti caratteristiche:

Multicertificazione gruppo I e gruppo II

Alimentazione: sezione dei cavi di collegamento bobina = 2,5 mm²

Massa: sezione del cavo di messa a terra interno = 2,5 mm² sezione del cavo di messa a terra esterno = 4 mm²

9.1 Temperatura del cavo

Il cavo deve essere adatto per la temperatura di lavoro come specificato nelle "Istruzioni di sicurezza" consegnate con la prima fornitura dei prodotti.

SOLENOIDE - Multicertificazione

Temperatura ambiente massima [°C]	Classe di temperatura		Temperatura della superficie massima [°C]		Temperatura minima del cavo [°C]	
	Gruppo I	Gruppo II	Gruppo I	Gruppo II	Gruppo I	Gruppo II
40°C	-	T4	150°C	135°C	90°C	90°C
45°C	-	T4	-	135°C	-	95°C
55°C	-	T3	-	200°C	-	110°C
60°C	-	-	150°C	-	110°C	-
70°C	N.D.	T3	N.D.	200°C	N.D.	120°C

TRASDUTTORE - Multicertificazione

Temperatura ambiente massima [°C]	Classe di temperatura		Temperatura della superficie massima [°C]		Temperatura minima del cavo [°C]	
	Gruppo I	Gruppo II	Gruppo I	Gruppo II	Gruppo I	Gruppo II
40°C	N.D.	T6	150°C	85°C	-	-
70°C	N.D.	T6	150°C	85°C	90°C	90°C

10 PRESSACAVI

I pressacavi con connessioni filettate GK-1/2", 1/2"NPT o M20x1,5 per cavi standard e armati devono essere ordinati separatamente, vedere tabella tecnica **KX800**

Nota: un sigillante Loctite tipo 545 va utilizzato sulle filettature di ingresso dei pressacavi

11 OPZIONI IDRAULICHE

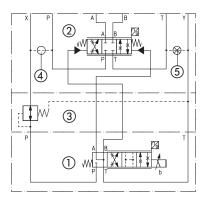
- B = Solenoide e trasduttore di posizione sul lato della bocca B dello stadio principale.
- C = L'opzione /C è disponibile per connettere i trasduttori di pressione (forza) con il segnale in uscita corrente 4 ÷ 20 mA, al posto degli standard ±10 VDC. Il segnale in ingresso può essere riconfigurato via software scegliendo tra tensione e corrente, entro un valore massimo di ±10 VDC o ±20 mA.
- **D** ed **E** = La configurazione del pilotaggio e del drenaggio può essere modificata come raffigurato nella sezione [13].

La configurazione standard delle valvole assicura il pilotaggio interno e il drenaggio esterno. Per una configurazione diversa del pilotaggio/drenaggio, selezionare:

Opzione /D Drenaggio interno.

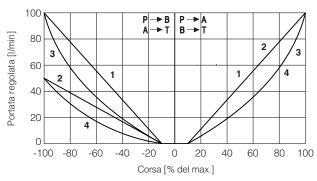
Opzione /E Pilotaggio esterno (attraverso la bocca X).

G = Valvola di riduzione pressione installata tra la valvola pilota e il corpo principale con taratura fissa:


DPZA-2 = 28 bar

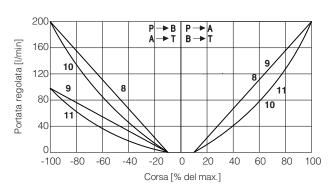
DPZA-1, -4 e -4M = 40 bar

È consigliabile per le valvole con pilotaggio interno in caso di pressione del sistema superiore a 150 bar.


La valvola di riduzione pressione è di serie per DPZA-1; per altre dimensioni, aggiungere l'opzione $\emph{\textbf{/G}}.$

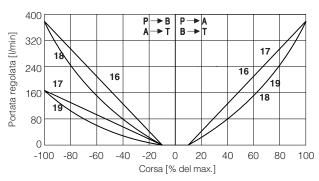
SCHEMA FUNZIONALE - esempio della configurazione 71

- ① Valvola pilota
- ② Stadio principale
- ③ Valvola di riduzione pressione
- Tappo da aggiungere al pilotaggio esterno attraverso la bocca X
- ⑤ Tappo da togliere per il drenaggio interno attraverso la bocca T


16,1 Diagrammi di regolazione (valori misurati a Δp 10 bar P-T)

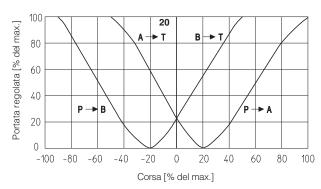
DPZA-1:

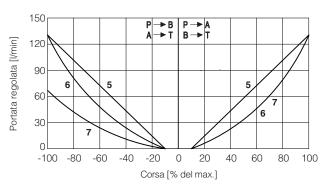
2 = DL5 **1**=L5


3=S5 **4** = D5

DPZA-2:

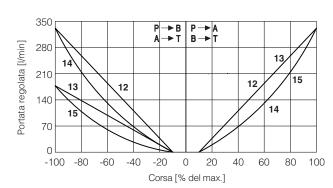
8 = L5 **9** = DL5


10 = S5 **11** = D5


DPZA-4M:

16 = L5 **17** = DL5

18 = S5 **19** = D5


20 = Q5

DPZA-2:

5=L3 **6** = S3

7=D3

DPZA-4:

12 = L5 **13** = DL5

15 = D5 **14** = S5

> Configurazione idraulica/segnale di riferimento (standard e opzione /B) Nota:

Segnale di riferimento $\begin{array}{cc} 0 \; \div \; +10 \; V \\ 12 \; \div \; 20 \; mA \end{array} \} \;\; P \longrightarrow A \; / \; B \longrightarrow T$

Segnale di riferimento $\begin{array}{cc} 0 \div -10 \ V \\ 12 \div 4 \ \ mA \end{array} \right\} \ P \longrightarrow B \ / \ A \longrightarrow T$

20 = cursore lineare Q5

Il tipo di cursore Q5 è specifico per i controlli alternati P/Q in combinazione con l'opzione E-BM-*/S dei driver separati (vedere tabella tecnica GS240 e FX500).

Consente di controllare la pressione nella bocca A o B e assicura una posizione centrale di sicurezza (A-T/B-T) per depressurizzare le camere dell'attuatore.

Le forti caratteristiche di controllo in ingresso rendono il cursore adatto sia per il controllo della pressione, sia per le regolazioni del movimento in diverse applicazioni.

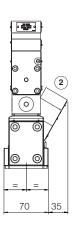
13 POSIZIONE DEI TAPPI PER I CANALI DI PILOTAGGIO/DRENAGGIO

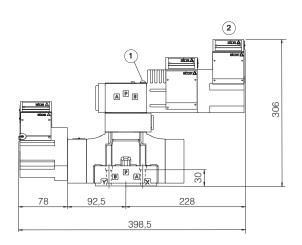
A seconda della posizione dei tappi interni, è possibile ottenere diverse configurazioni di pilotaggio/drenaggio come mostrato di seguito.

Per modificare la configurazione di pilotaggio/drenaggio, i tappi corretti devono essere semplicemente interscambiati. I tappi devono essere sigillati utilizzando loctite 270.

La configurazione standard delle valvole assicura il pilotaggio interno e il drenaggio esterno

Canali di drenaggio DPZA-1 Canali di pilotaggio Pilotaggio interno: tappo cieco SP-X300F ① in X; Pilotaggio esterno: tappo cieco SP-X300F ② in Pp; Drenaggio interno: tappo cieco SP-X300F ③ in Y; Drenaggio esterno: tappo cieco SP-X300F ④ in Dr. (4) 1 3 DPZA-2 Canali di pilotaggio Canali di drenaggio Senza tappo cieco SP-X300F ①; Pilotaggio interno: **(2)** Pilotaggio esterno: Aggiungere tappo cieco SP-X300F ①; **Drenaggio interno**: Senza tappo cieco SP-X300F ②; **Drenaggio esterno**: Aggiungere tappo cieco SP-X300F ② DPZA-4 Canali di pilotaggio Canali di drenaggio DPZA-4M Pilotaggio interno: Senza tappo cieco SP-X500F ①; Pilotaggio esterno: Aggiungere tappo cieco SP-X500F ①; **Drenaggio interno**: Senza tappo cieco SP-X300F ②; **Drenaggio esterno**: Aggiungere tappo cieco SP-X300F 2.

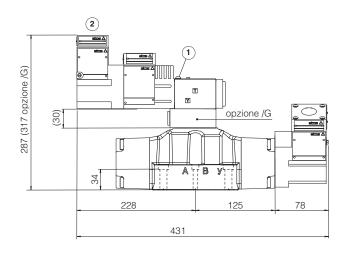

14 VITI DI FISSAGGIO E GUARNIZIONI

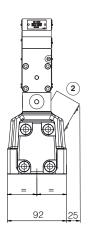

Tipo	Dimensione	Viti di fissaggio	Guarnizioni				
	1 = 10	4 viti a esagono cavo M6x40 classe 12.9	5 OR 2050; Diametro delle bocche A, B, P, T: Ø 11 mm (massimo)				
	. = 10	Coppia di serraggio = 15 Nm	2 OR 108 Diametro delle bocche X, Y: Ø = 7 mm (max.)				
	2 = 16	4 viti a esagono cavo M10x50 classe 12.9 Coppia di serraggio = 70 Nm	4 OR 130; Diametro delle bocche A, B, P, T: Ø 20 mm (massimo				
DPZA	Z = 10	2 viti a esagono cavo M6x45 classe 12.9 Coppia di serraggio = 15 Nm	2 OR 2043 Diametro delle bocche X, Y: Ø = 9 mm (max.)				
DPZA	4 = 25	6 viti a esagono cavo M12x60 classe 12.9	4 OR 4112; Diametro delle bocche A, B, P, T: Ø 25 mm (massimo)				
	4 = 25	Coppia di serraggio = 125 Nm	2 OR 3056 Diametro delle bocche X, Y: Ø = 11,5 mm (max.)				
	4M = 27	6 viti a esagono cavo M12x60 classe 12.9	4 OR 3137; Diametro delle bocche A, B, P, T: Ø 34 mm (massimo)				
	TIVI — 21	Coppia di serraggio = 125 Nm	2 OR 3056 Diametro delle bocche X, Y: Ø = 7 mm (max.)				

DPZA-L-*-1

ISO 4401: 2005 Superficie di montaggio: 4401-05-05-0-05 (vedere tabella P005)

Massa [kg]			
DPZA-*-17*	9,7		



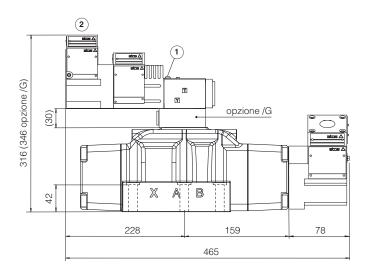


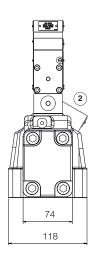
DPZA-L-*-2

ISO 4401: 2005 Superficie di montaggio: 4401-07-07-0-05 (vedere tabella P005)

Mass	Massa [kg]	
DPZA-*-27*	13	
Opzione /G	+0,9	

- 1 = Sfiato aria off
- (2) = Occorre tenere in considerazione le dimensioni dei pressacavi (vedere tabella tecnica **KX800**)


DPZA-L-*-4 DPZA-L-*-4M


ISO 4401: 2005

Superficie di montaggio: 4401-08-08-0-05

(vedere tabella P005)

Massa [kg]	
DPZA-*-4*	18,2
DPZA-*-4M*	18,2
Opzione /G	+0,9

- 1 = Sfiato aria off
- (2) = Occorre tenere in considerazione le dimensioni dei pressacavi (vedere tabella tecnica **KX800**)

16 DOCUMENTAZIONE CORRELATA

X010 Generalità per l'elettroidraulica in ambienti pericolosi

X020 Riepilogo dei componenti antideflagranti Atos certificati secondo ATEX, IECEX, EAC, PESO, CCC
 FX900 Informazioni di funzionamento e manutenzione per valvole proporzionali antideflagranti

KX800 Pressacavi per valvole antideflagranti

P005 Superfici di montaggio per le valvole elettroidrauliche